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ABSTRACT
This paper introduces a Bayesian approach to modeling GPS er-
rors for comparing forensic evidence, addressing the challenge of
determining the most likely source of a single GPS localization
given two proposed locations. We develop a probabilistic model
that transforms GPS coordinates into polar coordinates, capturing
distance and directional errors. Our method employs Markov chain
Monte Carlo (MCMC) sampling to estimate the data-generating
processes of GPS measurements, enabling robust comparison of
potential device locations while quantifying uncertainty. We apply
this approach to three datasets: one from existing literature and two
newly collected datasets from Ljubljana and Novo mesto. The result
is a posterior distribution of log-likelihood ratios directly compar-
ing the two propositions, which can be transformed into likelihood
ratios to comply with current standards in forensic science.
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1 INTRODUCTION
GPS as evidence has been proven problematic in court, as it has
often been dismissed or not presented at all [1] due to the fear of
wrong judgment or discrediting other evidence due to the uncer-
tainty of GPS measurements. Our goal is to provide a Bayesian
approach for evaluating a single GPS localization in light of two
proposed locations. To give more context to why such approaches
are needed, consider the following problem: a single GPS localiza-
tion (evidence point 𝐸) was extracted from a device D found on
the crime scene. Since E is a GPS measurement there is inherently
some measurement error. Additionally, someone could have moved
the device D during or after the crime. Investigators propose two
geographical locations (P1 and P2) of where the device could have
been when it measured E and we want to identify which of the two
propositions is more likely. Since the conclusion is to be presented
in court, we need to provide sufficiently precise verbal equivalents
of the results while not misleading or misrepresenting the weight
of a piece of evidence.

The contributions of this paper are summarized as follows:

• a Bayesian statistics approach utilizingMarkov chainMonte
Carlo sampling to estimate the data generating processes
(DGPs) of GPSmeasurements taken from different locations
to compare which DGP most likely generated a single GPS
measurement obtained as forensic evidence,

• Code implementation of the proposed approach along with
MCMC diagnostics, results, and visualizations made avail-
able at [2],

• two GPS measurement datasets collected in Ljubljana and
Novo mesto to aid further research.

2 RELATEDWORK
The increased availability of GPS logs from smartphones, activity
trackers, navigation, and autonomous vehicles has increased the
use of such digital evidence in court[1]. Due to the high risk of
misinterpretation and wrongful judgment or discrediting other
evidence, statistical methods have been proposed [3] to be able to
quantify and reason under uncertainty due to GPS measurement
errors.

The magnitude of GPS errors varies between devices and geo-
graphical locations. In [8] the authors report a localization error
of up to 5 meters in low-cost phones, while others (see [5]) have
measurement errors varying up to 100 meters.

The standard in forensic science for evidence source identifica-
tion is to use likelihood ratios [7]. As different magnitudes of likeli-
hood ratios are not easily explainable in court, forensics standards
have been developed to define the verbal equivalent of likelihood
ratio ranges to provide in court[4], with the current version of the
standard shown in Table 1.

In [5] the authors computed a likelihood ratio to compare two
proposed device locations (P1 and P2) in light of the evidence E.
They also considered that errors of GPS measurements may not
be equal in all directions (the horizontal error is dependent on the
direction) resulting in high computational complexity due to sample
dependence and brute force distribution fitting.

3 DATASETS
For all used datasets we provide data sources as well as scripts
to transform data from other works to the input format for our
approach. The scripts used to transform and clean the datasets that
were used as inputs for modeling are also provided.

The University of Lausanne dataset (UNIL) was obtained from
the public implementation of [5]. It consists of 699 GPS measure-
ments that were taken from two proposal points as reference mea-
surements on the University of Lausanne campus. The dataset is
visualized in Figure 1.

Our Ljubljana (LJ) dataset consists of 4 predefined points (evi-
dence 𝐸, and three proposal points 𝑃1, 𝑃2, and 𝑃3, each point is spec-
ified by latitude and longitude) and a total of 450 images captured
while standing on those proposal points along with information
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Figure 1: A geographical visualization of the UNIL dataset
from [5]. E is the single localization that was recovered, while
P1 and P2 are two proposed locations. Only deduplicated ref-
erence measurements for both proposals are shown. Note
how reference measurements are not even on the same build-
ing as the proposal they were measured from.

if the iPhone camera app had permission for precise location for
every image. A visualization of the dataset is shown in Figure 2.

Our Novo mesto (NM) dataset consists of 4 predefined points
(evidence 𝐸, and three proposal points 𝑃1, 𝑃2, and 𝑃3, each point
is specified by latitude and longitude) and a total of 429 images
captured using the same data collection process as the LJ dataset.
A visualization of the dataset is shown in Figure 3.

Compared to the UNIL dataset, LJ and NM datasets have signifi-
cantly less measurement error (on average 15 meters) and a high
percentage (90%) of duplicate measurements. This is due to the
measurements being done in a very short time interval (30 minutes)
which resulted in a lot of cached duplicates.

4 METHODS
Unless specified, everything in this section applies to all used
datasets (UNIL, LJ, and NM).

4.1 LJ and NM dataset collection
To more clearly understand what affects the accuracy of GPS evi-
dence as well as error patterns, we collect two additional datasets
with the same device. The distance between the predefined points
was around 100 meters in Ljubljana and 10 meters in Novo mesto.
To take images an iPhone 11 Pro was used with the default cam-
era app. We also note granting and denying permission to precise
locations to the camera app for each image. To obtain GPS mea-
surements from images, we extract the latitude, longitude, and time
of capture from the EXIF data of each image, and note the corre-
sponding proposal point it was taken from and if precise location
permission was granted.

Figure 2: A geographical visualization of our LJ dataset. Only
deduplicated measurements are shown.

Figure 3: A geographical visualization of our NM dataset.
Only deduplicated measurements are shown.

4.2 Dataset preprocessing
Each measurement is defined by time, latitude, longitude, and the
label of the proposal it was taken from. For LJ and NM data we
keep only measurements that were retrieved when precise loca-
tion permission was given to the iPhone camera app. We remove
consecutive duplicate GPS measurements per proposal by sorting
all corresponding measurements ascending by date and time, then
removing all consecutive duplicates based on latitude and longi-
tude. This is done because consecutive duplicates could be due to
caching and/or rate-limiting to GPS queries. Consequently, if we
try to model distance and angle errors of GPS measurements, some
angles/distances will have artificially more probability mass due
to duplicates, even though these duplicates are obtained from the
same GPS measurement.
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4.3 Transforming GPS to polar coordinates
To simplify the modeling and representation of GPS errors, each
measurement was converted from (latitude, longitude) coordinates
to distance (in meters) and angle (azimuth from the north, in ra-
dians) from the ground truth point (proposal) it was taken from.
To illustrate the concept we show the UNIL dataset transformed
to polar coordinates in Figure 4. We aim to model the distance
and directionality of GPS errors taken from proposal points (and
consequently their DGP) to estimate under which proposal point is
the retrieved evidence point E more likely.
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Figure 4: The UNIL dataset [5] after coordinate transfor-
mation (distance error in meters and angle - azimuth from
north). Note, we only have one evidence point E, we trans-
form it concerning (relative to, as seen from) each proposal
point separately. Proposals P1 and P2 are at the center of the
polar plot and measurements show the directionality (angle)
and magnitude (in meters) of the GPS errors.

4.4 Probabilistic model of GPS errors
To formalize our approach to modeling GPS errors, we define a
probabilistic model and estimate its parameters with MCMC sam-
pling. The model is defined in the Stan probabilistic programming
language[6] which allows users to define (log) density functions
and then perform Bayesian inference with MCMC sampling.

Let 𝑀𝑖 𝑗 = (𝑑 𝑗 , 𝜙 𝑗 ) be the 𝑖 − 𝑡ℎ measurement measured from
proposal 𝑃 𝑗 where 𝑑 𝑗 is the distance in meters from 𝑃 𝑗 to 𝑀𝑖 𝑗

and 𝜙 𝑗 the azimuth (in radians) of the line between 𝑃 𝑗 and 𝑀𝑖 𝑗 .
Analogously, let𝑀𝑖𝑘 be the 𝑖 − 𝑡ℎ reference measurement measured
from proposal 𝑃𝑘 . The set of measurements for each proposal was

modeled as a bivariate normal distribution:

𝑀𝑖 𝑗 ∼ MultiNormal(𝜇 𝑗 , Σ 𝑗 )
𝑀𝑖𝑘 ∼ MultiNormal(𝜇𝑘 , Σ𝑘 )
𝜇 𝑗 = [𝜇𝑑𝑖𝑠𝑡 𝑗 , 𝜇𝑎𝑛𝑔𝑙𝑒 𝑗 ]
𝜇𝑘 = [𝜇𝑑𝑖𝑠𝑡𝑘 , 𝜇𝑎𝑛𝑔𝑙𝑒𝑘 ]
Σ 𝑗 ∈ R2𝑥2

Σ𝑘 ∈ R2𝑥2

where 𝜇 𝑗 is a mean vector of distance (in meters) and angle (in
radians) relative to proposal 𝑃 𝑗 . Σ 𝑗 is the covariance matrix1. Anal-
ogously for 𝜇𝑘 and Σ𝑘 relative to proposal 𝑃𝑘 . Stan’s default, non-
informative priors were used for all parameters.

To compare under which proposal (𝑃 𝑗 or 𝑃𝑘 ) is the evidence
point 𝐸 more likely, we compute the likelihood of 𝐸 under each
of the models and compute the likelihood ratio. To enhance nu-
merical stability without loss of expressiveness the logarithms of
likelihoods were used, which can later be exponentiated back. This
was implemented in Stan’s generated quantities block2:

log𝐿𝑗 = log 𝑃 (𝐸 𝑗 |𝜇 𝑗 , Σ 𝑗 )
log𝐿𝑘 = log 𝑃 (𝐸𝑘 |𝜇𝑘 , Σ𝑘 )
log𝐿𝑅 = log𝐿𝑗 − log𝐿𝑘

where 𝐸 𝑗 and 𝐸𝑘 denote the evidence point 𝐸 transformed relative
to proposals 𝑃 𝑗 and 𝑃𝑘 respectively.

To assess if the models capture the input data (reference mea-
surements) well, a posterior predictive check was performed by
randomly sampling points from the estimated bivariate normal
models to create replicate datasets (this is also done in the gener-
ated quantities block in Stan). The idea is that if an estimated model
fits input data well, we should be able to generate similar, synthetic
data by randomly sampling from it. In other words, if the estimated
model managed to capture the behavior of distance and angle errors
in our reference measurements, it should be able to generate new,
synthetic, measurements that resemble the same distance and angle
errors. To visualize this, we overlay the generated synthetic data
over the reference measurements (input data).

5 RESULTS
Due to the length limit of the paper we only show the full results for
the UNIL dataset. However, all results, visualizations, and MCMC
diagnostics are available in the provided repository.

MCMC sampling with 4 chains of 4000 samples each was per-
formed to sample from the posterior. Standard MCMC diagnostics
(trace plots, effective sample sizes, R-hat values) do not indicate any
issues in convergence. Additionally, we visualize a posterior pre-
dictive check of the UNIL dataset by overlaying a random replicate
dataset over the real measurements in Figure 5.

Figure 6 depicts the posterior distribution of log-likelihood ratios
for the UNIL dataset along with 95% highest-density intervals. In

1We use the Cholesky parameterization of the Multivariate normal, which is natively
implemented in Stan, so Σ 𝑗 = 𝐿𝑗𝐿

′
𝑗 for efficiency and numerical stability during

MCMC sampling, but omit it here for brevity
2Everything in the generated quantities block can be computed outside of Stan (e.g. in
Python) as it is performed on the posterior draws after the MCMC sampling is done,
we do it in Stan for clarity.
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Figure 5: A posterior predictive check for the UNIL dataset
in the form of a randomly selected replicate dataset for each
proposal. All generated measurements for P1 and P2 are
within expected regions, however, the model for P1 is better
supported by the real measurements as the dataset heavily
favors P1 as the source of E. This is also noted by the authors
of the dataset [5].

line with the dataset, the P1 proposal is heavily favored compared
to P2 to have generated the evidence point. Log-likelihood ratios
can be converted back to likelihood ratios3 which are currently the
standard used in courts as per [4] and [5] to compare evidence for
source-identification in forensic science.

While the model is stable and MCMC converges, even the lower-
bound of the 95% highest density interval log-likelihood ratio is
log𝐿𝑅 = 11, which after exponentiation is 𝐿𝑅 = exp 11 = 59874,
which is orders of magnitude above the highest obtainable LR
range for a single piece of evidence (see Table 1 and the standard
specification in [4]).

6 DISCUSSION
Our method, utilizing MCMC sampling to estimate data-generating
processes of GPS measurements, offers direct uncertainty quantifi-
cation, greater computational efficiency, and numerical stability
due to Stan, MCMC, and working with log-likelihood ratios in-
stead of likelihood ratios compared to the seminal method from
[5]. The main limitation of our approach is the assumption that
reference measurements taken (months) after the original evidence
are enough to sufficiently model the DGP of GPS errors. Even if the
exact device from the crime scene is used, many other variables are
out of our control (GPS satellite visibility, noise and interference of
GPS positioning, software updates changing the measuring process,
cellular and WiFi networks that are used to improve location). In-
vestigators should always strive to gather more actual evidence (i.e.
3Highest-density intervals are not equal-tailed, this means that when applying trans-
formations, such as exponentiation to the whole distribution, the HDI will change,
For such cases we recommend computing equal-tailed credible intervals that are not
affected by distribution transformations.
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Figure 6: The posterior distribution of log-likelihood ratios
for the UNIL dataset alongwith 95% highest-density intervals
to quantify uncertainty.

Range of LR Verbal Equivalent

1-3

In my opinion the observations are no
more probable if [P1] rather than[P2]
were true. Therefore, the observations
do not assist in addressing which of
the two propositions is true.

4-10
In my opinion the observations are
slightly more probable if [P1] rather
than [P2] were true.

10-100
In my opinion the observations are more
probable if [P1] rather than [P2]
were true.

100-1000
In my opinion the observations are
much more probable if [P1] rather
than [P2] were true.

Table 1: LR verbal equivalents to use in court when compar-
ing two propositions, obtained from [4] page 39.

more GPS logs from the crime scene) to directly model the errors
instead of using a proxy such as reference measurements.
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