
Counter-Strike Character Object Detection via Dataset
Generation

Matija Šinko
matija11.sinko1@gmail.com

University of Maribor
Faculty of Electrical Engineering and Computer Science

Maribor, Slovenia

ABSTRACT
This paper addresses the challenge of developing robust object
detection systems in the context of Valve’s Counter-Strike by in-
troducing a novel, high-quality dataset generated using a complex
image generator built within the Unity game engine. This generator
mimics the original game’s environment and character interactions,
capturing the complexity of in-game scenarios. The dataset pro-
vides a valuable resource for training models like the YOLOv9
algorithm, which we employ to develop an object detection system
that achieves high precision and recall, in turn proving the usability
of our dataset. Our dataset and demonstrated model could be used
for object detection in future multi-modal autonomous agents, like
the one we propose at the end of the paper.

KEYWORDS
Counter-Strike, Object Detection, AI, YOLO, Autonomous Agents,
Computer Vision, Data Generation

1 INTRODUCTION
Artificial intelligence (AI) has opened new possibilities in gaming,
with achievements like AlphaGo and AlphaStar mastering complex
environments [3, 13]. These advances have sparked interest in
applying AI to automate popular games. For fans of first-person
shooters like Valve’s Counter-Strike [12], this raises questions about
AI-driven gameplay in fast-paced, strategic environments [4].

The primary problem addressed in this paper is the develop-
ment of a robust object detection system for Counter-Strike, which
is a crucial component for creating autonomous agents capable
of human-level gameplay. Traditional approaches have relied on
manually labeled datasets, which are time-consuming to create and
often struggle to keep up with game updates. Additionally, previous
attempts at developing AI agents for Counter-Strike have typically
employed single, monolithic neural networks, leading to mixed
results in terms of performance and adaptability.

In response to these challenges, we propose a novel solution: a
high-quality, automatically generated dataset created using a com-
plex image generator within the Unity game engine. This dataset is
designed to train object detection models like YOLOv9 [14], which
we use to identify enemy players in Counter-Strike. Furthermore,
we suggest that this dataset can be a foundation for multi-model
agent architectures, which could offer more robust and adaptable
AI systems for gaming.

The structure of this paper is as follows: First, we provide a
detailed overview of the methodology used to generate the dataset
and train the object detection model. Next, we present the results of
our experiments, demonstrating the effectiveness of our approach.

Finally, we discuss the potential applications of the dataset in multi-
model systems and conclude with suggestions for future research.

2 METHODOLOGY
2.1 Overview of Dataset Generation
This section outlines our approach to generating a dataset for train-
ing an object detection model in Valve’s Counter-Strike. Using
Unity, we closely replicated in-game environments and charac-
ters to ensure the training data accurately reflects real gameplay
conditions.

2.2 Image Generation Pipeline
Our image generation pipeline was built for flexibility and iterative
improvement, allowing quick updates to enhance model training
and evaluation. This approach was key to creating a diverse and
robust dataset with various in-game scenarios (see Figure 1).

Figure 1: Object detection with image generation pipeline

2.3 Detailed Environment and Character
Simulation

A critical aspect of our dataset generation process was ensuring that
the simulated environments and charactermodels closely resembled
those in the actual Counter-Strike game, similar to approaches
using synthetic data in Unity and Unreal engines for realistic object
detection [1, 10].

2.3.1 Lighting and Rendering. We used Unity’s High Definition
Render Pipeline (HDRP) [11] to recreate the complex lighting condi-
tions of Counter-Strike. Realistic lighting made the dataset closely
mirror the game, helping the model generalize to real gameplay.

2.3.2 Character Positioning and Inverse Kinematics (IK). To create
realistic and varied character poses, we applied Inverse Kinematics
(IK) algorithms[15]. IK enabled dynamic posing of characters in
natural scenarios like aiming, shooting, and navigating.

2.4 Object Detection and YOLO Algorithm
Object detection is key to validating our dataset, focused on identi-
fying enemy players in the game. We used the YOLOv9 algorithm,



Matija Šinko

known for its speed and accuracy, to demonstrate the dataset’s
effectiveness. Training YOLOv9 on our dataset confirmed its utility.
Though this study centers on YOLOv9, similar detectors could be
used in more complex multi-modal agents in the future.

3 THE PROPOSED METHOD
3.1 Detailed Dataset Generation Process
As discussed earlier, Our object detectior was trained on a large
Unity-generated dataset comprising varied scenarios on a detailed
Dust 2 map with both Terrorist and Counter-Terrorist characters.

3.1.1 Environment and Character Creation.

(1) MapRecreation: TheDust 2mapwas decompiled fromCounter-
Strike 2 game files and imported into Unity 3D. After cleaning
up the geometry, we obtained a 1:1 replica of the map. (see
Figure 2)

Figure 2: Comparison of Dust 2 in the Counter-Strike 2 game
(left) and Unity Recreation (right)

(2) Character Models: We extracted and rigged character models
for Terrorists and Counter-Terrorists using Blender, then im-
ported them into Unity with various poses and weapons. (see
Figure 6 in Appendix)

(3) Lighting and Rendering: Unity’s High Definition Render
Pipeline (HDRP) was employed to set up realistic lighting con-
ditions, using path tracing technology to closely mimic the
visuals of Counter-Strike 2. (see Figure 3)

Figure 3: Comparison: Real Counter Terrorist (left) and Unity
recreation (right)

3.1.2 Data Annotation and Generation.

(1) RandomPlacement: Characterswere randomly placed around
themap, and virtual cameras were positioned to capture various
perspectives.

(2) Dynamic Posing: Using the Final IK plugin for inverse kine-
matics [7], characters were given dynamic poses aimed at dif-
ferent targets, adding variability to the training data.

(3) Labeling: Our system automatically annotated images with
bounding boxes for each character, distinguishing between
Terrorists, Counter-Terrorists, and their states (alive or dead).

4 RESULTS
4.1 Purpose of the Experimental Work
The goal of our experimental work was to train a YOLOv9 object
detector with sufficient accuracy and recall. This would be critical
for potential future use in multi-model autonomous agents, where
accuracy would be needed to distinguish between friendly and en-
emy characters, as well as dead and alive ones. High recall would be
vital for quickly and reliably spotting characters and differentiating
them from the background, which would be essential for agents
that rely on object detection models for shooting tasks.
4.2 Comparative Studies and Setups
We iteratively refined our image generator, creating datasets to
train and evaluate the object detection model, with each iteration
enhancing accuracy and recall:

(1) Initial Model: A dataset of 10,000 images featuring only
alive characters in various poses, serving as the baseline.

(2) Addition of Dead Characters: Introduced separate labels
for dead characters to improve recall, especially in distin-
guishing live enemies from the background.

(3) First-Person Perspective and UI Overlays:Added hands
and UI elements to reduce misclassification of player arms
as enemies.

(4) Blood Splatter Effects: Introduced blood effects to en-
hance precision in differentiating character states.

(5) Name Tag-Based Identification: Added name tags to
distinguish friendly from enemy characters, as friendlies
always have tags above their heads. Some tags without
visible characters belong to friendlies behind walls, which
we avoid classifying. This approach required training two
separate models, one for each team.

These were evaluated for precision and recall improvements.

4.3 Datasets Used for Testing
To ensure the robustness and generalizability of the object detection
model, we evaluated it on a variety of datasets:

(1) Self: This dataset was generated using the same methods as
the training set, serving as a control to measure overfitting
and baseline performance.

(2) Bots CT and T Combined: Captured from bot games in
Counter-Strike, this one did not include unique player skins.
This dataset is the closest to a final deployment scenario.

(3) Batch 3: This dataset included captures from real multi-
player games, featuring unique player skins and a variety
of in-game environments.

(4) Batch 4: Similar to Batch 3 but sourced from different mul-
tiplayer sessions, providing additional variety in testing
conditions.

(5) Batch 1: Captured from the Deathmatch mode, this dataset
differs most from the intended deployment environment
but provides insights into model generalization.

(6) Bots, Batch 3, Batch 4 Combined: A comprehensive
dataset combining Bots CT and T, Batch 3, and Batch 4,
used to test overall model performance across various con-
ditions.

(7) AllCombined: A super-set combining all the above datasets.



Counter-Strike Character Object Detection via Dataset Generation

These datasets tested the model’s strengths and weaknesses.

4.4 Evaluation Metrics
We measured various evaluation metrics, including Precision, Re-
call, F1 Score, mAP, and IoU, with detailed results available for each
in the Appendix. Our focus was on Precision and Recall. High Pre-
cision is vital for accurately identifying enemy characters, avoiding
misclassification of friendly units, while high Recall ensures all en-
emies are detected quickly and distinguished from the backround.
These metrics are crucial for creating robust object detection mod-
els that could be used for potential future autonomous agents in
competitive gaming.

4.5 Announcement of the Experiments
Performed

We conducted experiments to evaluate object detection models
trained on our dataset, testing their ability to detect and classify
characters in Counter-Strike under various conditions. These ex-
periments included assessing different character states (alive, dead)
and the impact of dataset sizes and image resolutions, aiming to
refine the model’s precision and recall for real-world gameplay.

4.6 Detailed Descriptions of Experiments and
Results

4.6.1 Image Generator Upgrades.

(1) Initial Model of Only Alive Characters: This model
showed good precision but lacked recall, which is crucial
for our application.

(2) Addition of Dead Characters: Improved the model’s re-
call, which is crucial for distinguishing between live ene-
mies and background elements.

(3) First-Person Perspective and UI Overlays: addressed
the issue of confusing player arms with enemy characters.
Improved recall.

(4) Added Blood Splatter Effects: improved both precision
and recall for the terrorist dead and alive classes.

(5) FriendlyCharacter Identification via name tag: Showed
best results and vastly improved accuracy and recall . Batch
1, trained in Deathmatch mode without name tags, performed
worse, but this isn’t a concern since the dataset is intended
for Competitive mode, where name tags are always present.

4.6.2 Cross Model Examination. The purpose of the cross-model
examination is to compare the performance of different model
configurations across various metrics.

As observed in Figure 4, our upgrades to the Unity Generator
were successful in improving performance. For example, the re-
call for the counter-terrorist class improved from 0.4 to over 0.6.
Graphs for the class Terrorist as well as the F1 score can be found in
the Appendix A.3. While the improvements on the dead character
classes seen in Figure 14 in the Appendix, were not significant, we
observed notable enhancements in the performance for the terrorist
and counter-terrorist classes see 12, 13. This distinction is crucial, as
our primary objective is for our dataset to be suitable for potential
training of agents that can accurately differentiate between alive
friendly and enemy characters. The dead characters need only to

be distinguished from the living, without requiring detailed differ-
entiation among themselves. Tabled and detailed Data for these
cross model examinations can be found in the Appendix A.3.

Figure 4: Counter-Terrorist class across all of our generation
upgrades on 10k 640x360 images

4.6.3 Testing Different Dataset Sizes. We trainedmodels on varying
dataset sizes ranging from 1,000 to 100,000 images to examine the
impact on performance. As seen in Figure 15 in the Appendix Larger
training sizes improved model performance significantly.

4.6.4 Bigger Image Sizes and a Bigger Model. We explored the ef-
fects of training with larger image sizes and using a bigger YOLOv9
model and we came to the conclusion that bigger image sizes and a
bigger model lead to better performance all around See Apendix
A.5. That’s why we trained out best model on a 1280x720 image
size and with 20k images

4.6.5 Comparison with Other Counter-Strike Object Detectors. In
this section, we compare our best object detection model, trained
on a dataset of 20k images at a resolution of 1280x720 with name
tags, to three other models developed by different authors:

• Our Best Model: (Terrorist team, 1280x720, 20k images).
• Siromer’s Model: Dataset taken from [8, 9].
• Python Lessons Model: Dataset taken from [5, 6]. This

dataset was used by Chenyang Dai [2] for object detection
in their hybrid imitation training model.

Figure 5: Comparison of object detection models

Our curated bar charts show that our object detector outperforms
other methods in detecting Terrorists on the two selected datasets
See table 1. For results on additional datasets and classes, see the
Appendix A.6. Notably, Chenyang Dai used the ’Python Lessons’
dataset to train the object detection part of their multi-model AI.
This indicates that integrating our dataset into amulti-model Counter-
Strike 2 system could potentially yield superior performance, as our
dataset seems better than Python Lessons’. These findings support
our initial hypothesis that our dataset could be used to train more
complex multi-model agents.



Matija Šinko

Table 1: Detailed Metrics for Class: Terrorist
Metric Bots CT and T Combined Bots, Batch 3, Batch 4 Combined

Ours Siromer PyLessons Ours Siromer PyLessons

Precision 0.97 0.82 0.67 0.87 0.81 0.68
Recall 0.91 0.79 0.41 0.60 0.48 0.37
F1 Score 0.94 0.80 0.51 0.71 0.60 0.47

4.6.6 Video Demonstrations of Model Performance. We provide
video demonstrations of our object detection model’s performance
for both Counter-Terrorist and Terrorist scenarios. Available on
YouTube:
• Counter-Terrorist: www.youtube.com/watch?v=u49CLDt8MgU
• Terrorist: www.youtube.com/watch?v=u49CLDt8MgU

4.7 Discussion
The improvements through our image generation pipeline have suc-
cessfully enhanced model performance. The precision achieved by
the model is sufficient to avoid mistakenly identifying teammates
or dead characters as threats, while the recall is robust enough to
reliably detect enemy players. Any remaining inaccuracies could
be further refined with reinforcement-based shooting models that
adapt to detection patterns when used on our generated dataset.
In comparison to previous studies, such as [4], which encountered
issues like agents mistakenly shooting dead characters, our ap-
proach offers a clear advantage. The dataset we generated, paired
with a specific object detection model, can relieve a potential agent
from the need to learn the shapes of characters, allowing it to fo-
cus more on tasks like shooting accuracy and map traversal when
learning. While our model shows promise, it is currently limited to
detecting objects within the Dust 2 map and is sensitive to player
cosmetic skins. Additionally, the model does not differentiate be-
tween body parts, which may limit its application in more precise,
action-oriented tasks.

5 CONCLUSION
5.1 Summary of Work and Key Findings
This research focused on the development and validation of a high-
quality dataset generated using a Unity-based image generator for
training object detection models in the context of Counter-Strike.
Through iterative enhancements to our image generation pipeline,
we achieved significant improvements in both precision and recall
of the YOLOv9-based object detection model. This validated the
effectiveness of our approach, demonstrating that synthetic data
can effectively train models for complex in-game scenarios.

5.2 Best Results and Contributions
Our study made several key contributions to the field:
• Versatile Dataset for Object Detection: Our image generator

and datasets are valuable for training object detection models in
Counter Strike.

• Effective Use of Synthetic Data Proven by Object Detection:
We showed that synthetic data can replace real-world data in
training models, especially when labeled data is scarce. This
was proven by achieving strong results with an object detection
model trained on our generated data.

• Future Applications: Our work could be incorporated into
future autonomous agents or used as object detection teaching
exercises.

5.3 Future Work
Looking forward, there are several avenues for enhancing the ca-
pabilities of our system:
• Expansion of Dataset and Model Generalization: Future

work will focus on expanding the dataset to include additional
decompiled maps and the introduction of random cosmetic skin
patterns to improve the model’s generalization. Additionally,
incorporating YOLOv9 pose estimation will allow for the identi-
fication of specific character body parts, thereby enhancing the
model’s ability to aim and shoot with greater effectivenes in a
potential reinforcement learning framework.

• Proposed Multi-Model Agent Architecture: We propose a
complex multi-model architecture that could serve as the foun-
dation for developing autonomous agents capable of high-level
gameplay in Counter-Strike see Appendix A.7.

• Planned Dataset Publication: We plan to publish our dataset
on platforms like Kaggle, Hugging Face, and Roboflow, allow-
ing others to use it for developing agents and practicing object
detection skills.

5.4 Final Thoughts
This study underscores the potential of synthetic data and iterative
model development in advancing AI for gaming. While challenges
remain, particularly in bridging the gap between synthetic and real-
world data, the progress made here provides a solid foundation for
future innovations. The proposed multi-model architecture repre-
sents a promising direction for developing more sophisticated and
capable autonomous agents, capable of performing at a high level
in complex gaming environments like Counter-Strike. As AI con-
tinues to evolve, integrating reinforcement learning and advanced
detection techniques will be crucial in pushing the boundaries of
what these agents can achieve.
REFERENCES
[1] Per-Arne Andersen, Teodor Aune, and Daniel Hagen. 2022. Development of a Novel Object Detection

System Based on Synthetic Data Generated from Unreal Game Engine. Applied Sciences 12 (08 2022).
https://doi.org/10.3390/app12178534

[2] Chenyang Dai. 2021. Counter-Strike Self-play AI Agent with Object Detection and Imitation Training.
mailto:qddaichy@stanford.edu. CS230: Deep Learning, Fall 2021, Stanford University, CA. (LaTeX
template borrowed from NIPS 2017.).

[3] Guillaume Lample and Devendra Singh Chaplot. 2018. Playing FPS Games with Deep Reinforcement
Learning. arXiv:1609.05521 [cs.AI] https://arxiv.org/abs/1609.05521

[4] Tim Pearce and Jun Zhu. 2021. Counter-Strike Deathmatch with Large-Scale Behavioural Cloning.
arXiv:2104.04258 [cs.AI] https://arxiv.org/abs/2104.04258

[5] Python Lessons. 2020. TensorFlow 2.3.1 YOLOv4 - CSGO Aimbot. https://github.com/pythonlessons/
TensorFlow-2.3.1-YOLOv4-CSGO-aimbot. Accessed: 2024-08-30.

[6] Python Lessons. 2020. YOLOv4 TensorFlow 2.3.1 - CSGO Aimbot. https://pylessons.com/YOLOv4-TF2-
CSGO-aimbot. Accessed: 2024-08-30.

[7] RootMotion. 2014. Final IK: The Ultimate IK Solution for Unity. http://www.root-motion.com/final-
ik.html. Accessed: 2024-08-30.

[8] Faruk Günaydin (Siromer). 2024. Counter-Strike 2 Body and Head Classification. https://www.kaggle.
com/datasets/merfarukgnaydn/counter-strike-2-body-and-head-classification. Accessed: 2024-08-25.

[9] Faruk Günaydin (Siromer). 2024. CS:GO/CS2 Object Detection. https://medium.com/@siromermer/csgo-
cs2-object-detection-db234312f9b6. Accessed: 2024-08-25.

[10] et al. Steve Borkman, Adam Crespi. 2021. Unity Perception: Generate Synthetic Data for Computer
Vision. arXiv:2107.04259 [cs.CV] https://arxiv.org/abs/2107.04259

[11] Unity Technologies. 2024. High Definition Render Pipeline (HDRP). https://docs.unity3d.com/Packages/
com.unity.render-pipelines.high-definition@12.1/manual/index.html. Accessed: 2024-08-30.

[12] Valve Corporation. 2023. Counter-Strike 2. https://www.counter-strike.net/cs2. Accessed: 2024-08-30.
[13] Hado van Hasselt, Arthur Guez, and David Silver. 2015. Deep Reinforcement Learning with Double

Q-learning. arXiv:1509.06461 [cs.LG] https://arxiv.org/abs/1509.06461
[14] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. 2024. YOLOv9: Learning What You Want to

Learn Using Programmable Gradient Information. arXiv:2402.13616 [cs.CV] https://arxiv.org/abs/2402.
13616

[15] Chris Welman. 1993. Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation.
Simon Fraser University.

https://www.youtube.com/watch?v=HvENKv_dBzo
https://www.youtube.com/watch?v=u49CLDt8MgU
https://doi.org/10.3390/app12178534
mailto:qddaichy@stanford.edu
https://arxiv.org/abs/1609.05521
https://arxiv.org/abs/1609.05521
https://arxiv.org/abs/2104.04258
https://arxiv.org/abs/2104.04258
https://github.com/pythonlessons/TensorFlow-2.3.1-YOLOv4-CSGO-aimbot
https://github.com/pythonlessons/TensorFlow-2.3.1-YOLOv4-CSGO-aimbot
https://pylessons.com/YOLOv4-TF2-CSGO-aimbot
https://pylessons.com/YOLOv4-TF2-CSGO-aimbot
http://www.root-motion.com/final-ik.html
http://www.root-motion.com/final-ik.html
https://www.kaggle.com/datasets/merfarukgnaydn/counter-strike-2-body-and-head-classification
https://www.kaggle.com/datasets/merfarukgnaydn/counter-strike-2-body-and-head-classification
https://medium.com/@siromermer/csgo-cs2-object-detection-db234312f9b6
https://medium.com/@siromermer/csgo-cs2-object-detection-db234312f9b6
https://arxiv.org/abs/2107.04259
https://arxiv.org/abs/2107.04259
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.1/manual/index.html
https://www.counter-strike.net/cs2
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/2402.13616
https://arxiv.org/abs/2402.13616
https://arxiv.org/abs/2402.13616


Counter-Strike Character Object Detection via Dataset Generation

A APPENDIX
A.1 Detailed Dataset Generation Process

Figure 6: Various character poses for: Terrorists and Counter-
Terrorists each aiming at a target

A.2 Model Upgrades
Figures related to the model upgrades and their detailed results can
be found here:

Figure 7: Alive Counter-Terrorist and Terrorist characters

Reference to the image context in the document

Figure 8: Dead and alive characters

Reference to the image context in the document

Figure 9: First-person hands and UI

Reference to the image context in the document

Figure 10: Blood next to a dead character

Reference to the image context in the document

Figure 11: Image for the Coutner Terroristmodel with a name
tag over a Counter terrorist and a Terrorist with no name tag

A.3 Cross Model Examination data

Figure 12: Counter-Terrorist class across all of our generation
upgrades



Matija Šinko

Figure 13: Terrorist class across all of our generation upgrades

Figure 14: Counter-Terrorist dead class across all of our gen-
eration upgrades

Table 2: Precision for Class: Terrorist

Data Set Self CT and T Combined Batch 1 Batch 3 & 4

Only Alive 0.972 0.901 0.758 0.802
Dead and Alive 0.944 0.880 0.670 0.890
Hands w/ Guns & UI 0.937 0.857 0.752 0.812
Added Blood 0.945 0.840 0.760 0.879
Splatter Stains

Table 3: Recall for Class: Terrorist

Data Set Self CT and T Combined Batch 1 Batch 3 & 4

Only Alive 0.909 0.479 0.421 0.357
Dead and Alive 0.894 0.736 0.530 0.395
Hands w/ Guns & UI 0.887 0.749 0.483 0.418
Added Blood 0.854 0.775 0.583 0.428
Splatter Stains

Table 4: F1-Score for Class: Terrorist

Data Set Self CT and T Combined Batch 1 Batch 3 & 4

Only Alive 0.940 0.626 0.541 0.494
Dead and Alive 0.919 0.802 0.592 0.547
Hands w/ Guns & UI 0.911 0.799 0.589 0.552
Added Blood 0.897 0.806 0.660 0.576
Splatter Stains

Table 5: Combined Metrics for Class: All Metrics

Data Set Self CT and T Combined Batch 1 Batch 3 & 4

Blood Dataset 1k 0.919 0.598 0.544 0.448
Blood Dataset 5k 0.920 0.608 0.519 0.416
Blood Dataset 10k 0.916 0.714 0.575 0.536
Blood Dataset 20k 0.919 0.665 0.574 0.464
Blood Dataset 100k 0.905 0.737 0.568 0.460



Counter-Strike Character Object Detection via Dataset Generation

A.4 Testing Different Dataset Sizes

Figure 15: all metrics (classes) combined for different dataset
sizes

Table 6: Detailed Metrics for Class: Counter Terrorist Dead

Data Set Self CT and T Combined Batch 1 Batch 3 & 4

Only Alive - - - -
Dead and Alive 0.861 0.650 0.315 0.270
Hands w/ Guns & UI 0.853 0.483 0.552 0.294
Added Blood 0.841 0.553 0.446 0.222
Splatter Stains

A.5 Bigger Image Sizes and a Bigger Model

Figure 16: YOLO model sizes

YOLO offers five different model sizes 16, each with a trade-off
between accuracy and training/inference speed. All of our experi-
ments so far have been conducted using the smallestmodel, YOLOv9t,
due to its faster inference time. The reasoning is that if our object
detector is to be used as part of a real-time autonomous agent, we
need the fastest possible response time (inference time). Similarly,
we have used images with dimensions of 630x360 for all experi-
ments so far, as larger images provide better accuracy but at the
cost of slower processing speeds. We have also explored dataset
sizes, which show a similar trend: larger datasets yield better accu-
racy but result in longer training times. Such adjustments to our
dataset, such as changing model size, image size, or dataset size, are
dynamic and easy to make when using an image generator like ours
but are very rigid and time-consuming in traditional hand-labeling
scenarios. In this section, we will examine how different model
sizes, image dimensions, and dataset sizes affect accuracy and com-
pare their performance. Here we compare 4 different models to see
how effective different methods are (image size, dataset size, model
size).

• A 10k YOLOv9 tiny model with image size (640x360)
• A 100k YOLOv9 tiny model with image size (640x360)
• A 10k YOLOv9 model with image size (640x360)
• A 10k YOLOv9 tiny model with image size (1280x720)

Figure 17: 1280x720 model next to previous models

Table 7: Performance Metrics for Class: Counter Terrorist

Data Set 10k T 100k T 10k C

Prec Rec F1 Prec Rec F1 Prec Rec F1

Self 0.937 0.856 0.895 0.924 0.894 0.909 0.937 0.905 0.921
Bots CT and T Combined 0.862 0.632 0.730 0.862 0.645 0.738 0.910 0.595 0.719
Batch 1 0.787 0.592 0.676 0.792 0.503 0.615 0.837 0.556 0.668
Bots, Batch 3, Batch 4 Combined 0.761 0.550 0.638 0.700 0.553 0.618 0.846 0.466 0.601

From the above bar charts, we can deduce that having a bigger
dataset, choosing a bigger model, and using larger image sizes
helps improve our model’s performance. The best performance was
observed in the model trained on larger images. Future work could
involve training a model on 100k images of size (1280x720).

Check the Appendix to see how the (1280x720) model compares
to our previous generation upgrades. A.5.

We can see that the higher image size aligns with our trend of
increasing recall, which was our original goal.



Matija Šinko

Figure 18: Counter-Terrorist dead class across all of our gen-
eration upgrades

Figure 19: 1280x720 model compared to previous models

A.6 Comparison with Other Counter-Strike
Object Detectors

In this section, we present a broader comparison of our model
against those trained on Siromer’s and PythonLessons’ datasets
across more metrics and datasets.

Figure 20: Comparison of object detection models expanded
on the class "Terrorist"

Table 8: Expanded Metrics for Class: Terrorist

Metric Precision Recall

Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.97 0.97 0.75 0.87 0.93 0.91 0.52 0.60
Siromer 0.90 0.82 0.76 0.81 0.87 0.79 0.61 0.48
PyLessons 0.77 0.67 0.42 0.68 0.90 0.41 0.30 0.37

Metric F1 Score mAP50

Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.95 0.94 0.61 0.71 0.93 0.91 0.52 0.60
Siromer 0.88 0.80 0.67 0.60 0.87 0.79 0.61 0.48
PyLessons 0.83 0.51 0.35 0.47 0.90 0.41 0.30 0.37

Metric mAP50_95 Fitness

Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.97 0.92 0.57 0.73 0.82 0.51 0.28 0.33
Siromer 0.86 0.87 0.67 0.59 0.61 0.58 0.41 0.37
PyLessons 0.88 0.53 0.26 0.45 0.64 0.31 0.14 0.25

As shown in Figure 20 and seen in table 8, our model outperforms
the other two models across all metrics, except when evaluated



Counter-Strike Character Object Detection via Dataset Generation

on the "Batch 1" dataset. This is not entirely surprising. As previ-
ously mentioned, our best-performing model relies heavily on the
effectiveness of name tags above characters’ heads to distinguish
friendlies from enemies. This approach led to significant improve-
ments but performed worse on datasets that were trained in game
modes like "Deathmatch," where no name tags are displayed above
friendly characters. Batch 1, as stated earlier, is trained in such a
deathmatch game mode. Therefore, more traditional approaches,
such as those using Siromer’s and PythonLessons’ datasets, gener-
alize better in this scenario. However, this is not a major concern
for us since our model is designed for the competitive game mode,
where two teams of five players face off and friendly characters
always have name tags above their heads.

Figure 21: Comparison of object detection models expanded
on the class "Counter-Terrorist"

Table 9: Expanded Metrics for Class: Counter-Terrorist

Metric Precision Recall

Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.97 0.83 0.73 0.55 0.91 0.76 0.60 0.44
Siromer 0.91 0.81 0.78 0.68 0.95 0.56 0.62 0.61
PyLessons 0.81 0.54 0.40 0.39 0.75 0.32 0.33 0.44

Metric F1 Score mAP50

Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.94 0.80 0.66 0.49 0.91 0.76 0.60 0.44
Siromer 0.93 0.66 0.69 0.64 0.95 0.56 0.62 0.61
PyLessons 0.78 0.40 0.36 0.41 0.75 0.32 0.33 0.44

Metric mAP50_95 Fitness

Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.95 0.76 0.60 0.41 0.78 0.29 0.32 0.21
Siromer 0.97 0.62 0.69 0.63 0.74 0.45 0.46 0.39
PyLessons 0.83 0.31 0.24 0.33 0.53 0.19 0.12 0.18

As seen in Figure 21 and table 9, our model performs noticeably
worse on the "Counter-Terrorist" class compared to the "Terrorist"
class, as shown in Figure 20. In some instances, it is even outper-
formed on the "Bots, Batch 3, Batch 4 Combined" dataset. This
outcome is also expected because our latest model, which leverages
name tags, requires training two separate models: one for when the
friendly team is "Terrorists" and another for when the friendly team
is "Counter-Terrorists." This approach results in some asymmetry
in the detection performance between the two classes. The data
shown in the previous two figures was obtained using the model
trained when the friendly team was "Terrorists." Results for the
model trained when the friendly team was "Counter-Terrorists"
showed complementary outcomes, with the "Counter-Terrorist"
team being detected more effectively. The differences, however, are
minor. We chose to present the results from the "Terrorist" team
model because it yielded slightly better results. In future work,
it may be more beneficial to average the results across the two
team-based models for each class.

Lastly, it is important to emphasize that the most relevant dataset
for comparison is the "Bots CT and T Combined," as it most accu-
rately represents competitive environments simulating real matches
with bot opponents and teammates. The other datasets introduce
more variability in the form of custom player cosmetics, which our
generator does not currently support. However, this is unnecessary
if our goal is to use our object detector exclusively for bot matches.



Matija Šinko

A.7 Future Work and Proposed Multi-Model
Architecture

Proposed Multi-Model Agent Architecture: We propose a com-
prehensive multi-model architecture that could serve as the foun-
dation for developing autonomous agents capable of high-level
gameplay in Counter-Strike:

(1) Object Detection for Enemy Players: This model func-
tions as the agent’s eyes, focusing on detecting and classify-
ing enemy players, enabling the agent to focus on shooting
accuracy and map traversal.

(2) Reinforcement Learning for Aiming and Shooting:
Acting as the agent’s arms, this model uses reinforcement
learning to aim and shoot at detected enemies, adjusting
its behavior based on skill levels.

(3) Object Detection on the In-Game Minimap: This com-
plementary model identifies player positions on the in-
game minimap, providing additional spatial awareness.

(4) Decision Making for Player Movement: Utilizing min-
imap data, this model determines the agent’s movement
strategy, optimizing its position on the map through super-
vised or reinforcement learning.

(5) 3D Environment Modeling and Detection: Enhancing
environmental perception, this model employs techniques
like SLAM or MiDaS to build a 3D understanding of the
game world.

(6) DynamicMap Traversal: Leveraging the 3D environment
model, this model navigates the map dynamically, utiliz-
ing pathfinding algorithms or reinforcement learning to
simulate player inputs.


	Abstract
	1 Introduction
	2 Methodology
	2.1 Overview of Dataset Generation
	2.2 Image Generation Pipeline
	2.3 Detailed Environment and Character Simulation
	2.4 Object Detection and YOLO Algorithm

	3 The Proposed Method
	3.1 Detailed Dataset Generation Process

	4 Results
	4.1 Purpose of the Experimental Work
	4.2 Comparative Studies and Setups
	4.3 Datasets Used for Testing
	4.4 Evaluation Metrics
	4.5 Announcement of the Experiments Performed
	4.6 Detailed Descriptions of Experiments and Results
	4.7 Discussion

	5 Conclusion
	5.1 Summary of Work and Key Findings
	5.2 Best Results and Contributions
	5.3 Future Work
	5.4 Final Thoughts

	References
	A Appendix
	A.1 Detailed Dataset Generation Process
	A.2 Model Upgrades
	A.3 Cross Model Examination data
	A.4 Testing Different Dataset Sizes
	A.5 Bigger Image Sizes and a Bigger Model
	A.6 Comparison with Other Counter-Strike Object Detectors
	A.7 Future Work and Proposed Multi-Model Architecture


