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ABSTRACT
This paper addresses the problem of finding minimal feedback arc
sets in directed graphs, a critical issue in various domains such
as computational biology, scheduling and network analysis. We
implement, analyse and improve a novel heuristic approach. Our
improved method reuses their heuristic method for reducing solu-
tion size and uses other established techniques from both exact and
approximate algorithms to speed up the algorithm. The implemen-
tation makes use of a fast network analysis library for additional
speed-up.
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1 INTRODUCTION
Directed graphs are a fundamental tool in network theory. They are
widely used to model systems where the direction of relationships
between entities is crucial. A feedback arc set (abbr. FAS) is a set
of edges in a directed graph such that removing those edges from
the graph makes it acyclic. While the entire set of vertices 𝑉 can
trivially serve as a feedback arc set, the challenge lies in finding a
minimal feedback arc set, i.e. a feedback arc set with the smallest
number of edges.

The minimal FAS problem has various real-world applications;
for instance, in social network analysis, FAS is crucial for mis-
information removal and label propagation [2], it also plays an
important role in computational biology and neuroscience [7], and
task scheduling by breaking cyclic dependencies.

The problem of finding a minimal FAS is NP-hard. The decisional
version of the problem, that is finding a FAS of a certain size, is one
of the first known NP-complete problems [8]. As such, it is believed
that there exists no algorithm that can solve it in polynomial time.
Additionally, the problem is also very challenging to approximate.
There is no known algorithm with a constant bound on the approx-
imation ratio, making it an APX-hard [6] problem. The problem
is complementary to the maximum acyclic subgraph problem and
there is a natural reduction to the linear arrangement problem [3].

In this work, we focus on the implementation and improvement
of a heuristic algorithm for finding a minimal FAS, as described by
Cavallaro et al. [3]. We shall refer to this algorithm as the original
algorithm. The algorithm begins by identifying strongly connected
components (abbr. SCC) in the input graph 𝐺 . Since any cycle is
guaranteed to belong to a single SCC [4], we are able to split𝐺 into

SCCs and run the rest of the algorithm on each SCC separately,
collecting partial solutions into a single list to form a full solution.
For the remainder of the algorithm, we assume that 𝐺 is strongly
connected. Two empty lists 𝐸𝑓 and 𝐸𝑏 are initialized to hold the
forward and backward edges respectively. Vertices are then ordered
according to some rule. For each vertex, we identify the forward
edges and add them to 𝐸𝑓 , thereby removing these edges from the
graph. Once the graph becomes acyclic during this process, iteration
stops. We then iterate in reverse order to identify the backward
edges, adding them to 𝐸𝑏 and removing them from 𝐺 . Once the
graph becomes acyclic, iteration stops.

To improve the solution, we apply Algorithm 1, also called smart-
AE [3] to the smaller of the two sets, 𝐸𝑓 or 𝐸𝑏 . This key component
aims to reduce the size of the found FAS by reintroducing the
removed edges in a balanced way while avoiding creating cycles in
the graph.

Algorithm 1 The smartAE heuristic

1: procedure smartAE(graph 𝐺 , edge list 𝐹 )
2: 𝐴𝐸 ← []
3: while 𝐹 not empty do
4: 𝑃𝐸 ← [], 𝑐𝑜𝑢𝑛𝑡 ← 0, 𝑖 ← 0
5: while 𝑖 + 𝑐𝑜𝑢𝑛𝑡 < |𝑉 (𝐺) | do
6: 𝑒 ← 𝐹 [𝑖 + 𝑐𝑜𝑢𝑛𝑡]
7: add 𝑒 to 𝑃𝐸, add 𝑒 to 𝐺
8: if 𝐺 is acyclic then
9: add 𝑒 to 𝐴𝐸
10: 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
11: else
12: remove 𝑒 from 𝐺

13: end if
14: 𝑖 ← 𝑖 + 1
15: end while
16: remove all of 𝑃𝐸 from 𝐹

17: end while
18: return 𝐴𝐸

19: end procedure

The smartAE heuristic begins with an acyclic graph 𝐺 and a
list of edges 𝐹 , which were removed from 𝐺 . An empty list 𝐴𝐸 is
initialized to store edges that can be successfully reintroduced into
the graph without creating a cycle. We iterate through all of the
edges in 𝐹 , where instead of sequentially reintroducing each edge
from 𝐹 , the algorithm employs a counter 𝑐𝑜𝑢𝑛𝑡 to strategically skip
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over edges. This approach ensures that we reinsert edges from as
many vertices as possible. During each iteration, a temporary list
𝑃𝐸 tracks the edges being tested. If adding an edge does not create
a cycle, it is added to 𝐴𝐸 and 𝑐𝑜𝑢𝑛𝑡 is incremented. Overall time
complexity of the entire algorithm is O(|𝐸 | ( |𝑉 | + |𝐸 |)).

2 IMPROVEMENTS
In this section, we outline our improvements of the original algo-
rithm. Improvements are grouped into four categories: size reduc-
tion, vertex ordering strategies, forward/backward edge removal
and acyclicity checks.

2.1 Size reduction
To reduce the size of the input graph𝐺 , we apply reduction rules
based on a more general method by Baharev et al. [1]. The general
method removes edges inside and on the boundary of an induced
subgraph 𝐻 with the following property: the size of a minimal FAS
equals the upper bound of the size of the smallest edge set 𝐹 whose
removal breaks all cycles in 𝐺 with vertices in 𝐻 . In this case, we
remove edges in 𝐹 from 𝐺 . We implemented a few straightforward
rules for eliminating some simple and common patterns - we applied
the following rules in rounds until a round produces no further
reduction in graph size.

(1) For every self-loop 𝑒 , i.e. an edge with the same entering
and exiting vertex, add 𝑒 to the solution.

(2) For every directed path 𝑢𝑣1 . . . 𝑣𝑛𝑤 where 𝑣1, . . . 𝑣𝑛 have
in-degree 1 and out-degree 1, delete 𝑣1, . . . 𝑣𝑛 and add the
edge 𝑢𝑤 to 𝐺 .

u 𝑣1 . . . 𝑣𝑛 w ⇒ u w

(3) For every 2-cycle 𝑢𝑣 where 𝑢 has out-degree 1, delete 𝑢 and
add 𝑢𝑣 to the solution.

(4) For every 2-cycle 𝑢𝑣 where 𝑢 has in-degree 1, delete 𝑢 and
add 𝑣𝑢 to the solution.

u v u v

Having reduced the graph using the rules described above, we
computed the strongly connected components (SCCs) as in the
original algorithm. However, after computing the SCCs, we ap-
plied a technique described by Park and Akers [10], in which each
SCC is further divided into its biconnected components. This effi-
ciently breaks up the graph into even smaller strongly connected
subgraphs. As biconnected components are traditionally defined
for undirected graphs, we treat the SCCs as undirected to compute
these components. The remainder of the algorithm is then applied
to these biconnected components. Throughout this article, we will
refer to these components as the SCCs.

2.2 Vertex ordering strategies
The original algorithm uses four vertex orderings in their experi-
ments: in-degree and out-degree, both in increasing and decreasing

order. We adopt all these orderings and add five more orderings.
The first two are based on the difference of the in-degree (𝑑− (𝑣))
and out-degree (𝑑+ (𝑣)) and two more are based on the difference of
their degrees and their ratio. We also included a random ordering
for comparison.

degdiff(𝑣) = max
��𝑑+ (𝑣) − 𝑑− (𝑣), 𝑑− (𝑣) − 𝑑+ (𝑣)�� (1)

degratio(𝑣) = max
(
𝑑− (𝑣)
𝑑+ (𝑣) ,

𝑑+ (𝑣)
𝑑− (𝑣)

)
(2)

2.3 Forward/backward edge removal
The forward edge removal phase proceeds as follows. For each ver-
tex 𝑣 in𝐺 , ordered according to the chosen ordering, we remove all
edges exiting 𝑣 and entering vertices that follow 𝑣 in the ordering,
then we check if 𝐺 has become acyclic. If 𝐺 is acyclic, we end the
edge removal phase. In the worst case, we remove forward edges of
every vertex, at which point𝐺 is guaranteed to be acyclic, since the
current ordering has become a topological ordering. The backward
edge removal phase is almost identical, the only difference being
that it removes edges that precede 𝑣 in the ordering. The original
algorithm chooses the smaller of 𝐸𝑓 and 𝐸𝑏 and only performs smar-
tAE on that. We challenged this approach and performed smartAE
on both, only then taking the smaller as the solution.

The purpose of the proposed improvement is to calculate an
SCC decomposition before forward/backward edges of a vertex are
removed. Then, instead of adding all edges to the solution, we skip
edges that exit one SCC and enter another. Such an edge cannot be
a part of a cycle. A cycle would imply that vertices from both SCCs
are reachable from one another, but then all those vertices would
be in the same SCC. As before, the edge removal phase terminates
when𝐺 becomes acyclic. This improvement is expected to increase
the running time but reduce the size of the solution.

2.4 Acyclicity checks
The most time-consuming aspect of the algorithm is restoration and
removal of edges during smartAE process. A standard method for
checking acyclicity is to find a topological ordering of the graph’s
vertices, i.e. a ordering of vertices such that all out-neighbors of
a vertex 𝑥 appear after 𝑥 . If the graph contains a cycle, then it
does not have a topological ordering [4]. This ordering provides an
efficient way to check if inserting an edge would create a cycle. If
it’s a backward edge, i.e. it ends in a vertex that comes before its
starting vertex, it forms cycles.

During smartAE we check acyclicity after restoring each edge.
If the resulting graph has cycles, we immediately remove that edge,
making the graph acyclic again. We avoid many calculations of a
new topological ordering by exploiting this sequence of operations.
Right before the use of smartAE at the end of forward/backward
edge removal, an acyclic check is performed. During the check, we
calculate a topological ordering and, if successful, store it in the
variable𝑇𝑐 . We are then able to use this variable to make subsequent
acyclicity checks trivial. When we restore an edge, we check if it is
a backward edge in the𝑇𝑐 . If it is, the graph is no longer acyclic. We
move the topological ordering from 𝑇𝑐 into a background variable
𝑇𝑝 and unset 𝑇𝑐 . When we remove the last restored edge, we move
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the ordering in 𝑇𝑝 back into 𝑇𝑐 . We thus avoid a recalculation in
the next acyclicity check.

3 EXPERIMENTAL RESULTS
We evaluated our implementation and improvements on the IS-
CAS circuit benchmark dataset [5] and on a selection of directed
networks from the SNAP Large Network Dataset Collection [9].
We experimented with different configurations of the algorithm to
assess the effect of each option on both speed and solution size. The
ISCAS dataset primarily served as a speed benchmark. The largest
instance in this dataset took about 5 to 10 minutes to complete,
depending on the configuration; while the implementation of the
original algorithm, which used four orderings instead of seven, took
around 90 minutes. This gave us confidence to apply our algorithm
on larger and more diverse networks from the SNAP dataset.

Our results from testing our implementation on the SNAP dataset
are presented in Table 1. To illustrate the complexity and size of
each graph, the first column lists the number of vertices and edges
for each instance, while the second column provides the number
of vertices and edges in the largest strongly connected component
(SCC). The figures in both columns are based on reduced graph.
The last column presents the best results from our different config-
urations, including the size of the minimal feedback arc set and the
time taken to compute it.

We implemented the algorithm in Python, using a graph library
written in C++. By implementing it this way, the source code is
relatively easy to understand while also keeping it reasonably fast
and efficient.We tested the implementation on the Arnes computing
cluster with a 12-hour time limit. Each run gave us solution sizes
for all vertex orderings. For runs that did not finish within the time
limit, we examined the sizes of SCCs that were being computed. We
searched for the largest SCC that computed at least one ordering
within the time limit. This provided a rough estimate of the largest
SCC size manageable in a parallel or distributed setting where each
ordering is processed by two separate threads or nodes, one for
forward edge removal and one for backward edge removal. In our
experiments this number is between 2.8 and 2.9 million edges. The
source code and raw result data is available at [11].

3.1 Impact of size reduction
The first option we tested was the use of size reductions. This
reduction has two distinct effects. First, it reduces the size of the
input graph. More importantly, the removal of edges and vertices
can lead to a smaller SCCs, effectively shrinking the problem size
and greatly reducing running time. Second, reduction rules should
help decrease the size of the solution. While we add some removed
edges to the solution, those edges are already guaranteed to be in
the optimal solution.

For instances with the largest SCC having more than about
14,000 edges, the algorithm’s running time was shorter when using
reductions, with time savings increasing with input size. We find
that for instances above this complexity, the benefits of reductions
outweigh the cost. For a third of instances, the algorithm produced
smaller solutions when reductions were not used, which is quite
surprising. For these instances, smartAE was particularly effective,
but its effect diminished after reductions. There is one instance for

Instance V-E max-SCC V-E Best result
7115-103689 1300-39456 7966: 14s
6301-20777 2068-9313 531: 15.3s
8114-26013 2624-10776 713: 20.9s
8717-31525 3226-13589 1186: 39s
8846-31839 3234-13453 1023: 38.8s
10876-39994 4317-18742 1721: 59.1s
22687-54705 5153-17695 1706: 1m37s
26518-65369 6352-22928 2254: 2m34s
36682-88328 8490-31706 2531: 3m44s
62586-147892 14149-50916 3361: 12m14s
75879-508837 32223-443506 141733: 37m53s
265214-418956 34203-151930 61598: 3m31s
325729-1469679 53968-304685 409862: 53m24s
281903-2312497 150532-1576314 313852: 9h43m2s
77360-828161 70355-888662 394218: 1h44m37s
82168-870161 71307-912381 403623: 1h48m43s

Table 1: Solution sizes and running times for SNAP instances

which the algorithm failed to complete within the time limit when
not using reductions, but successfully computed a solution with
configurations that used reductions.

3.2 Vertex orderings
Different vertex orderings bring drastically different results. The
orderings based on degree difference (1) and ratio (2), as well as
the random ordering, give consistently worse solutions than those
based on in-degree and out-degree. We should note that when
comparing apparently analogous orderings, e.g. forward edges of an
ascending ordering and backward edges of a descending ordering,
there were minor, but non-zero differences in solution size. Such
orderings were different due to the order of vertices with the same
score.

The speed of the serial algorithm can be multiplied by a factor
of 9

4 with no effect on solution size, by only using the in-degree
and out-degree orderings. Speed can be further doubled by only
computing forward edge removals, but at a cost of slightly worse
solution sizes. This gives us a speedup factor of 9

2 = 4.5. By taking
into account quadratic time complexity, this would theoretically
multiply the upper bound on feasible input size by 1.5, with no
impact on solution size or approximately 2.12 with slightly worse
solutions.

3.3 Impact of the SCC-based modification of
edge removal

As described in Section 2.3, we implemented a modified version of
the edge removal phase that is based on an SCC decomposition. The
running time of the algorithmwith this modification was more time
consuming than the unmodified version. For some instances the
running time doubled, while for others the impact on running time
was less than 10%. The impact on solution size is more complex,
though. If smartAE is not used, the solution is always smaller with
the modification, as expected. However, when smartAE is applied,
the solution can sometimes be larger with the modification. The
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difference is relatively small in those cases, ranging from 0.04%
to 0.5%. This finding is somewhat unexpected as we expected this
method to significantly improve solution size. This and our findings
regarding reduction highlight unpredictability of smartAE. Similarly
to our finding on vertex orderings, one can run the algorithm with
both edge removal procedures to potentially achieve a slightly
better solution size at a cost of running time.

3.4 Impact of smartAE
The addition of smartAE [3] roughly doubles the running time for
all cases without the modified edge removal phase. The improve-
ment in solution size, however, is heavily dependent on input size.
Generally, larger graphs exhibit smaller improvements compared to
smaller graphs. This is clearly illustrated in Figure 1, which shows
the percentage of edges selected for the FAS solution, both with
and without the smartAE procedure. The red portion of the bars
represents the improvement achieved with smartAE. For smaller
graphs, smartAE can reduce the solution size by half, whereas for
the largest tested graphs, the improvement is as little as 1%. This
observation raises questions about the usefulness of smartAE for
very large graphs.
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Figure 1: Percentage of solution edges compared to all edges
in the graph, with and without the smartAE procedure.

4 CONCLUSIONS AND FUTUREWORK
The heuristic algorithm presented in this paper has proven effective
in computing small feedback arc sets in large graphs. Multiple
configurations have been tested with varying degrees of success.

Our implementation achieved comparable solution quality in sig-
nificantly less time than the original approach on the same dataset,
and it was also able to handle larger graphs. By employing size
reduction techniques, we effectively decreased the complexity of

input graphs, leading to faster processing times and more manage-
able SCCs, especially in larger graphs. We further reduced compu-
tational complexity by avoiding unnecessary recalculations during
the smartAE process and by splitting SCCs into biconnected com-
ponents. The experiments also revealed that selection of vertex
ordering has a great impact on both the speed and quality of the so-
lutions. Orderings based on in-degree and out-degree, particularly
in descending and ascending orders, consistently outperformed
other strategies. The modification covered in Section 3.3 did not
consistently improve performance and, when it did, the benefits
were usually insignificant. Additionally, it has led to less predictable
results when smartAE was applied. The smartAE heuristic, while ef-
fective for reducing solution sizes in smaller graphs, showed lesser
returns as graph size increased, raising questions about its efficiency
and practicality in larger graphs.

However, there is still room for improvement. One is the speedup
described in Section 3.3, but there are also other avenues. An ob-
vious improvement is to implement the algorithm entirely in a
compiled language like C++, eliminating the significant overhead
of an interpreter. We plan on also adding more complex reduction
rules based on Baharev’s method [1], for example by searching for
instances of tournaments or other common patterns and reducing
based on those.
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