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ABSTRACT
This study focuses on identifying critical components within urban
public transportation networks, particularly in the context of fluc-
tuating demand and potential pandemic scenarios. By employing
advanced agent-based simulations, we analyzed passenger interac-
tions and ridership patterns across the San Francisco Bay Area’s
transit system. Key findings reveal specific transit stops and routes
that are highly sensitive to changes in demand, often serving as
bottlenecks or high-risk areas for the spread of infectious diseases.
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1 INTRODUCTION
Efficient public transportation is vital for urban mobility, economic
productivity, and public health. During the COVID-19 pandemic,
transit systems worldwide were dramatically affected, resulting in a
significant decline in ridership due to lockdowns, social distancing
measures, and the shift to remote work [1, 6]. Physical distancing, a
widely used non-pharmaceutical intervention to prevent the spread
of the virus, further reduced the capacity of public transportation
services, limiting their ability to meet demand [13].

Factors such as population growth, economic conditions, and
environmental policies can also cause fluctuations in public trans-
portation usage. Understanding these changes is crucial for plan-
ning resilient and efficient transit systems that can adapt to the
evolving needs of cities.

Adjusting service frequency during peak and off-peak hours al-
lows for more efficient use of resources and helps maintain service
levels that meet demand without overloading the system. Addition-
ally, rerouting or introducing new transit lines in underserved areas
can improve accessibility and attract more users, or conversely, in
the case of a pandemic, these changes can discourage usage to help
manage public health risks. Infrastructure updates, such as upgrad-
ing stations for better crowd flow can also help transit systems
adapt to changes. Therefore, it’s important to identify the parts of
the transit system that are most affected by changes in ridership to
develop these strategies effectively.

This research uses agent-based simulations to analyze passenger
interactions within transit systems. While networks traditionally
depict routes and stops, improved data collection now allows track-
ing individual passenger interactions. Smart card data [12] and
activity-based travel models [10, 11] capture detailed passenger
contact patterns. However, creating accurate real-world contact
networks from this data poses challenges, including computational
complexity and privacy issues [4, 5].

We used activity-based travel demand models to simulate proba-
ble traveler paths in transit networks, considering demand, supply,
and service details. These models are complemented by schedule-
based transit assignment models, which provide accurate estimates
of travel time and waiting times. We analyzed the outputs of tran-
sit assignments, considering transit route usage, congestion, and
waiting times at transit stops, to identify critical components of
the transit network that could be potentially affected by changes
in transit demand. Additionally, we processed this data to generate
contact networks. We then applied a modularity-based community
detection algorithm to extract non-overlapping communities of
passengers from the contact network and used these communities
to further analyze critical bus routes used by different communities.

2 BACKGROUND
This work is inspired by the methodologies used in previous stud-
ies [2, 3, 7]. However, rather than explicitly modeling the spread
of disease to identify high-risk transit components, it focuses on
examining the components most likely to be affected by changes
in ridership trends due to a pandemic or other scenarios.

The contribution of this work is to develop a framework that iden-
tifies critical components in terms of factors like changes in transit
demand, vehicle capacities, and transit schedules. The insights de-
rived from this framework can be further utilized for modeling
transit operations in these scenarios.

3 METHODOLOGY
3.1 Transit simulation model
We used a schedule-based transit assignment model, FAST-TrIPs [8],
to simulate passenger movement within the transit network. This
model’s time-dependent structure captures daily service variability
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and focuses on specific transit vehicle trips, which is crucial for
accurately reflecting passengers’ route choices based on the service
schedule. FAST-TrIPs operates on a transit network composed of
nodes that represent stops. Trips are connected to specific routes
within this network, and transfer links connect nodes where passen-
gers can change vehicles. This setup allows for precise modeling of
both vehicle movements and passenger transfers across the transit
network.

At the heart of FAST-TrIPs is the Transit Hyperpath Algorithm,
which constructs a subnetwork of probable transit routes and as-
signs probabilities to these routes using a logit route choice model.
The algorithm calculates hyperpaths by considering user-preferred
arrival times and waiting time windows, allowing for the simulation
of passenger journeys with a focus on real-time decision-making
and path selection. Passenger movement is then modeled using a
pre-estimated route choice model that incorporates factors such as
in-vehicle time, waiting time, walking time (for access, egress, and
transfers), and transfer penalties.

The transit assignment model generates detailed outputs, such
as vehicle load profiles and passenger trajectories. The load profile
provides information on the number of passengers boarding and
alighting at each stop, along with timestamps, offering insight
into passenger counts throughout the route. Passenger trajectories
document each passenger’s activities, including stop and vehicle IDs
with timestamps, enabling the modeling of interactions between
passengers.

3.2 Input data
FAST-TrIPs requires various input files, including transit system
data stored in GTFS-PLUS format, and transit demand data that
contains information about the trips individual passengers make
throughout the day, including trip origins, destinations, and pre-
ferred arrival times. Additionally, path weights associated with
in-vehicle time, waiting time, walking time, and transfer penalties
must be specified as input.

In the current study, we used GTFS-PLUS data 1 from the San
Francisco Bay Area in California from 2017, which includes 854
routes (covering bus, heavy rail, light rail, and ferry routes) and
36,058 trips serving 6,181 stops over a 24-hour weekday. On the
demand side, we used data generated in the same year using the
SF-CHAMP travel forecasting tool.

Since calibrated path weights were not available for the Bay
Area network, we borrowed path weights from a previous study [9]
corresponding to the Austin, Texas region.

3.3 Contact network
As mentioned previously, FAST-TrIPs outputs detailed passenger
trajectories that can be further processed to produce a contact net-
work. In this network, each passenger traveling within the transit
system is considered a node, and edges connect any two passengers
who share a vehicle trip for a positive time period. The vehicle
trip refers to a specific route with a specific departure time and
is unique to a single vehicle. Each edge is associated with three
attributes: the contact start time, contact duration (in seconds), and
the vehicle trip ID

1https://mtcdrive.app.box.com/s/3i3sjbzpsrbhxlwpl4v4vx9b0movferz

3.4 Community detection algorithm
We used the Clauset-Newman-Moore greedy modularity maximiza-
tion algorithm [3] to find the community partition of the contact
network with the highest modularity. This community detection
algorithm is a hierarchical agglomeration method designed to effi-
ciently identify community structureswithin large, sparse networks.
Unlike traditional methods, which can be computationally expen-
sive, this algorithm operates in a time complexity of 𝑂 (𝑚𝑑 log𝑛),
where 𝑛 is the number of vertices,𝑚 is the number of edges, and 𝑑
is the depth of the dendrogram describing the community structure.
For many real-world networks, which are sparse and hierarchical
(with 𝑚 ∼ 𝑛 and 𝑑 ∼ log𝑛), the algorithm runs in nearly linear
time, 𝑂 (𝑛 log2 𝑛).

3.5 Limitations
The primary limitation of this study is the size of the demand data.
Although the GTFS data originates from a transit network serving
millions daily, computational constraints prevented us from simulat-
ing real-world demand accurately. Consequently, train routes were
not filled beyond half capacity, making it impossible to realistically
assess the effects of demand changes on the trains. Additionally, the
dataset contains outdated transit system and demand information.
However, the proposed method serves as a proof of concept and
can be directly applied to more comprehensive travel datasets.

Another limitation is the lack of a detailed comparative study
with state-of-the-art methodologies that aim to achieve similar
objectives. This choice was due to space constraints, but future
research will expand on this comparison, with findings to be pub-
lished in a full-length journal paper.

4 RESULTS
4.1 Model outputs and contact network
Due to computational limits, the simulations used a reduced number
of iterations to reassign passengers to alternative routes. Despite
this, most passengers (41,845 out of 44,912) successfully reached
their destinations, resulting in 83,280 completed trips.

Figure 1 presents a boxplot of average waiting times, aggregated
by passenger, transit route, and transit stop.

Figure 1: Boxplots of average waiting times

The derived contact network consisted of 41,845 passenger nodes
and 3,530,995 contact links. The density plot of contact start times,
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displayed in Figure 2, peaked at 7 AM and 5 PM, reflecting typical
weekday commutes. The average contact duration was 18 minutes
and 43 seconds. Figure 4 shows the density plot of contact durations.

Figure 2: Density plot of contact stat times

The degree distribution of the contact network, shown in Figure 3,
indicates an average of 134 contacts per person, with a maximum
of 1,011, following a skewed power law distribution.

Figure 3: Degree distribution

Figure 4: Density plot of contact duration

4.2 Identifying critical components
We first aimed to identify transit stops that may be sensitive to
changes in demand. These stops are characterized by two key prop-
erties: they serve sufficiently large groups of people, and the av-
erage waiting times at these stops are longer than those at most

other stops in the transit network. The idea is that such stops
could become critical in scenarios where transit demand increases,
potentially turning them into bottlenecks. Additionally, in epidemi-
ological situations, passengers waiting at these stops might face
an increased risk of infection. To focus on the most relevant stops,
we filtered out those serving fewer than 100 people and sorted the
remaining stops based on average waiting time. Table 1 provides
information on the 10 stops with the longest average waiting times.
Most of the listed stops are served by multiple bus routes and have
between 100 and 200 passengers waiting at them throughout the
day.

In order to identify critical transit routes we took two approaches.
Firstly we identified routes whose vehicle trips are on average most
congest. Due to limited transit demand here we focused only on
bus routes. Table 2 shows 10 most critical bus routes identified in
this way.

The second approach involved identifying critical trips with re-
spect to the community structure of the contact network. Commu-
nity detection algorithm divided the network into 627 communities,
with the largest 10 containing 37% of all passengers in the network.
We then identified transit routes used by passengers who appear in
at least two of these ten communities and ranked the routes by the
number of communities whose passengers travel on them. Table 3
shows the ten most critical routes identified in this way. As can be
observed, all of the identified bus and trolleybus routes belong to
the San Francisco Municipal Railway (SF Muni) system operating
in San Francisco.

Figures 5 and 6 summarize the obtained results. Critical stops
are marked in red, bus routes used by multiple communities are
colored in green, and the most congested bus routes are marked in
blue.

As observed, the majority of the most congested bus routes
connect different cities within the Bay Area or link various cities to
San Francisco. For example, several of these routes travel between
Contra Costa and Alameda counties, as well as between San Mateo
and Alameda counties. Additionally, some routes connect Berkeley
and San Francisco, while many others link SanMateo County, Santa
Clara County, Marin County, and Petaluma in Sonoma County to
San Francisco. Most of the critical bus stops are concentrated in San
Francisco, with several others located in the centers of various cities
in the Bay Area, including Berkeley, Oakland, San Jose, and Palo
Alto. As previously noted, the bus and trolleybus routes connecting
different communities that commute in the Bay Area belong to the
SF Muni system operating within San Francisco.

5 CONCLUSION
Using agent-based simulations and network analysis techniques,
we identified transit stops and routes that are most vulnerable to
changes in demand, whether due to a pandemic or other social and
economic factors. Our findings show the importance of focusing on
crowded routes and stops with long wait times, as these are likely
to become bottlenecks when demand increases. The application of
community detection to passenger contact networks further reveals
how interconnected different transit routes are within major urban
areas, emphasizing the importance of certain routes in keeping
public transportation running smoothly.
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Figure 5: Critical components of San Francisco Bay Area
transit system

Figure 6: SF Muni transit routes

Table 1: Critical bus stops

Stop ID Average waiting time Number of serving routes
6420 18m 23s 5
6051 14m 21s 8
Folsom/8th 12m 8s 29
6336 11m 33s 11
103007 11m 4s 12
7186 8m 21s 16
103688 7m 51s 9
3rd/Mendell/Palou 7m 41s 6
13537 7m 13s 1
103589 6m 34s 4

Table 2: Most congested bus routes

Route ID Capacity Average number of pessengers
samtrans_83D 60 25
samtrans_16A 50 25
samtrans_292NA 75 20
scvta_101 63 19
scvta_182 63 18
samtrans_397 75 17
scvta_304 63 17
scvta_330 63 17
golden_gate_transit_GG76 63 14
samtrans_295 75 13

Table 3: Bus routes used by multiple communities

Route ID Community appearance count
sf_muni_49 8
sf_muni_27 7
sf_muni_1 6
sf_muni_14 5
sf_muni_19 5
sf_muni_22 5
sf_muni_10 5
sf_muni_38_33RD 5
sf_muni_2 5
sf_muni_5 5

Additionally, during an epidemic outbreak, crowded routes and
stops with long wait times can significantly contribute to the spread
of infectious diseases. Areas where many passengers gather for
extended periods are likely to become hotspots for infection trans-
mission. Moreover, the interconnected nature of certain transit
routes means that an outbreak starting in one part of the network
could quickly spread to other areas, especially if key routes are
involved. This highlights the need to closely monitor and manage
these critical parts of the system to reduce the risk of widespread
transmission. Implementing measures such as increasing service
frequency, rerouting buses, or enhancing cleaning protocols at
these critical points could be crucial in controlling the spread of
diseases. These insights can also informmore effective public health
strategies, such as prioritizing vaccination or testing efforts in areas
served by these high-risk routes and stops.
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