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ABSTRACT
Emotions are a fundamental element of human experience. They
influence a person’s perception of their environment, behavior, and
social interactions. In this study, we tested an innovative emotion
classification approach using electroencephalography (EEG). In
particular, we investigated the capabilities of brain connectivity
analysis methods for recognizing and understanding emotions. We
used the Granger causality connectivity metrics, which estimate
the directional connectivity between brain regions of individual
electrodes. The computed connectivity values for each electrode
pair were used as features for classifying emotions. The proposed
method was tested on four datasets. Finally, we showed a method
for identifying characteristic differences in brain connectivity for
different emotions, which can contribute to future neuroscience
research.
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1 INTRODUCTION
The ability to accurately classify emotional states from electroen-
cephalography (EEG) data has significant implications for mental
health monitoring, and adaptive human-computer interfaces [3].
However, the complex and dynamic nature of emotional responses
poses a challenge for conventional classification methods. Over the
past two decades, emotion processing using EEG has gained signif-
icant attention [16]. EEG is a method that measures brain activity
using the electrical potentials of electrodes attached to the scalp
[13]. EEG system electronics record electrode potentials, which
influence the voltage between different electrodes, providing infor-
mation on neural activity [3]. To learn more about this topic, we
recommend reading the book Analyzing Neural Time Series Data:
Theory and Practice (Issues in Clinical and Cognitive Neuropsy-
chology) [4]. The motivating force behind this research stems from
the desire to improve emotion classification and its explainability
and apply them to practical settings. For example, understanding
how viewers emotionally respond to advertisements can help craft
more effective marketing strategies. By using EEG and eye move-
ment technology, researchers can analyze subjects’ brain activity

and eye movements while viewing advertisements, thereby assess-
ing the effectiveness of specific content [15]. The present research
focuses on connectivity features within the brain, which, when
plotted, visually present the strength and direction of connectivity
between brain regions. This approach helps to elucidate the dynam-
ics of the brain neural network involved in emotional processing
and provides an estimation of how much influence activity at one
electrode has on activity in the region of another electrode [8]. By
examining connectivity features, we aim to develop a method that
can precisely recognize different emotional states.

2 METHODS
2.1 MATLAB and EEGLAB
For this study, we utilized MATLAB and EEGLAB. MATLAB is a
high-level programming language and inter- active environment
that is widely used in engineering, scientific research, and applied
mathematics. Developed by MathWorks, MATLAB is designed for
numerical computation, data analysis, algorithm development, and
visualization. EEGLAB is an open-source MATLAB toolbox de-
signed for the analysis of electroencephalography (EEG) data. It
provides a comprehensive environment for processing and visual-
izing EEG data, data importing, and advanced analysis techniques
such as independent component analysis (ICA).

2.2 Connectivity Measurements and Granger
Causality

In neuroscience, connectivity measurement involves techniques
that determine how different brain regions communicate and in-
teract. In our study, we employed Granger causality to compute
connectivity matrices that depict the directional interactions be-
tween signals at different EEG electrodes, providing insights into
the dynamic connectivity of brain regions. Granger causality is
based on the principle that if a time series X can improve the pre-
diction of some other signal Y in comparison to predicting signal Y
from its own historical data only, then there must be an information
flow from the data sources of X to the observed processes in Y [7].
However, it is important to clarify that this does not imply a causal
relationship in which X directly influences Y; rather, it indicates
that sources of activity in X are also involved in affecting Y. To com-
pute GC, two Vector Autoregressive (VAR) models are employed:
Univariate VAR predicts the target time series using only its own
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past values, whereas the bivariate VAR uses the past values of both
the target and potentially causal time series [11]. The reduction of
error when using the bivariate model in comparison to the univari-
ate model indicates the level of the electrodes’ causal relationship.
GC is computed for each electrode pair in both directions.

2.3 Machine Learning and Classification
Learner Tool

Machine learning is a field of study focused on developing statistical
algorithms that can learn patterns from data and make predictions
or decisions based on such learning [6]. Central to machine learn-
ing is the concept of features, which are measurable properties or
characteristics extracted from samples relevant to the target task. In
the context of this study, feature vectors represent structured sets of
features derived from the data samples. These feature vectors serve
as inputs to the classification process, where the goal is to enable
the classification of previously unseen data into predefined classes.
We have employed several classification models provided by the
Matlab classification learner tool, all with their default parameters.
For the validation scheme, we used 5-fold cross-validation; that is,
we divided the dataset into 5 equal-sized folds.

2.4 Neural Networks and Neural Network
Classification

Artificial neural networks are machine learning models that make
decisions like the human brain, utilizing layers of interconnected
neurons to model and recognize complex patterns in data [2]. They
can handle various tasks, including regression, clustering, and clas-
sification. For neural network classification, we designed our own
artificial neural network model using the Deep Network Designer
in MATLAB, which provides an intuitive and interactive user in-
terface for creating deep learning networks. To better understand
the decision process which is the internal mechanism by which
the network arrives at a specific classification decision, we used
gradient-based saliency maps. A saliency map highlights the most
important features of the input data that influence the model’s
output [12]. It essentially shows where the model is ”looking” or
focusing on its attention. A gradient map, in particular, is a spe-
cific type of saliency map that uses gradients to determine the
importance of the input features. By computing the gradient of the
output with respect to the input features, we can identify which
input features have the most significant impact on the output [12].

2.5 Statistical Analysis of Feature Importance
In addition to neural networks, statistical analysis plays a crucial
role in model interpretation. One common feature selection method
is the minimum redundancy maximum relevance (MRMR) method.
MRMR is used to select features that are highly relevant to the target
variable while ensuring that the selected features are minimally
redundant with each other [14]. This method helps identify features
that have the most influence on the model’s predictions, thereby
providing insights into the decision-making process of the model.

3 DATASETS
In this study, we used four different datasets. The data were obtained
from several sources to ensure a comprehensive representation of
neural activity across various contexts. In the following section, we
will explain how the experiments were conducted for each dataset.
The datasets were organized based on their chronological order
within the research timeline rather than their effectiveness or the
significance of the results.

(1) Dataset 1: EMOTIONS 1 - The data was obtained from
21 participants. They were presented with pictures in 20
repeated blocks. Each block included carefully selected pic-
tures that induced four different emotions (’veselje’ (happi-
ness), ’strah’ (fear), ’gnus’ (disgust), and ’nevtralno’ (neu-
tral)), presented in a specific sequence. To minimize the
impact of the sequence on brain activity, the order of cate-
gories was altered for every 10 participants. Pictures within
each category were presented for 1 s, with 2-5 s pauses, and
a fixation cross was displayed in the center of the screen.
The number of EEG signals was 32, with a duration of a
few seconds. (Source: UL MF [1])

(2) Dataset 2: EEG MOTOR MOVEMENT/IMAGERY
DATASET - The data was obtained from 109 volunteers
who performed different motor and imaging tasks, and 64-
channel EEG data was recorded using the BCI2000 system.
Each subject performed two 1-minute baseline runs (one
with eyes open, one with eyes closed), in addition to the
primary runs where motor and imaginary movements were
analyzed. The number of EEG signals was 64, with a dura-
tion of a few seconds. (Source: BCI2000 [10])

(3) Dataset 3: EMOTIONS 2 - Note that the data from this
dataset came from the same source as the first dataset. This
experiment was conducted as a follow-up to the initial
study, with some modifications. The differences are that it
was conducted on 50 participants and the display time of
each image was extended by 5 seconds. The number of EEG
signals was 32, with a duration of a few seconds. (Source:
UL MF [1])

(4) Dataset 4: SEED - Fifteen subjects participated in the exper-
iment, where they were shown 15 Chinese movie clips that
caused positive, neutral, or negative emotions. The number
of EEG signals was 62, with a duration of approximately 4
minutes. (Source: SEED [17][5]).

4 EXPERIMENTS AND RESULTS
The data required preprocessing to ensure that they were suitable
for further computation. Preprocessing included steps such as fil-
tering to remove noise and artifacts. We applied a bandpass filter to
each dataset to remove frequencies below the low-pass threshold
and above the high-pass threshold. This stage is crucial because it
removes low-frequency drift and high-frequency noise, which can
obscure the EEG signal of interest. After filtering, we performed re-
sampling. It is important to note that the sampling frequency should
be at least twice as high as the highest frequency present in the
signals. This is known as a Nyquist-Shannon sampling theorem [9].
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The following step was the epoching of the data. This process splits
the data into several epochs, which are defined based on reference
time points obtained from recording events such as the presentation
of visual stimuli, auditory cues, and motor actions. Next, we calcu-
lated the connectivity matrices. For each epoch, the connectivity
matrix was obtained using the Granger causality method. For each
pair of brain regions, a mathematical model was used to determine
the extent of this predictive relationship, resulting in a value in
the connectivity matrix. Before classification, we transformed the
obtained matrices into feature vectors. The transformation involved
flattening or reshaping the matrix into a one-dimensional array,
where each element of the array represents a specific feature. The
last column in the obtained table contained the label for each epoch.
Afterward, the data were tested using various classifiers. Finally,
we used statistical and neural network analysis to investigate the
patterns of brain function that enable the classification of emotions.

For each dataset, we applied the necessary methods and after the
classification of the data we obtained the following results:

(1) Dataset: EMOTIONS 1 - The highest accuracy was 26.2%
obtained by Narrow Neural Network classifier across four
classes. Therefore, the classification failed, as the obtained
results are at the level of randomness.

(2) EEGMOTORMOVEMENT/IMAGERY DATASET - The
highest accuracy was 90.0% obtained by the Wide Neural
Network classifier across two classes. The successful results
proved that our method was correct.

(3) Dataset: EMOTIONS 2 - The highest accuracy was 27.3%
obtained by SVM classifier across four classes. Similarly, as
with the first dataset, the classification was not successful.

(4) Dataset: SEED - results obtained for this dataset across
three classes are in the following table:

Classifier Results
Wide Neural Network 73.3%
Medium Neural Network 71.6%
Narrow Neural Network 71.0%
SVM 69.5%
Trilayered Neural Network 68.0%
Bagged Trees 67.9%
Bilayered Neural Network 67.4%
KNN 60.7%
Subspace KNN 60.7%
Fine Tree 50.7%
RUSBoosted Trees 49.6%
Kernel Naive Bayes 47.7%
Efficient Logistic Regression 45.5%
Quadratic Discriminant 33.3%

Table 1: Results of Different Classifiers - Dataset: SEED

From Table 4, we can observe that the model was able to success-
fully classify emotional states in dataset 4. It can also be noticed
that neural network algorithms performed the best. Therefore, the

purpose of further analysis was to determine whether such analysis
could aid in understanding brain processes by identifying which
connectivity pairs were significant for a certain emotion type. We
performed the analysis of feature importance on dataset 4 using
two different approaches: statistical and neural networks-based.

4.1 Statistical Analysis
For the statistical approach, we used the fscmrmr function avail-
able in MATLAB, which ranks features for classification using the
minimum redundancy maximum relevance (MRMR) algorithm. The
outputs of the fscmrmr function were used to create a matrix rep-
resenting the importance scores of each feature, which could be
further analyzed or visualized. To visualize the relationships be-
tween different features or electrodes in the dataset, we plotted an
EEG connectivity map.

Figure 1: Feature Connection Map
The figure shows the importance of a feature (connectivity pair) as
assessed by MRMR. Darker arrows indicate stronger connections.

The arrows represent the connections between electrodes, with
the thickness or color indicating the importance or strength of the
connection. This visualization can provide insights into the relation-
ships between different features and help interpret the importance
scores obtained from the MRMR function analysis. Therefore, we
showed that using the statistical approach, we can visualize the re-
lationship between electrodes. Because the features were obtained
using Granger causality, we gained detailed insight into the direc-
tion of their influences.

4.2 Neural Network Analysis
In addition to classification performed by the Classification learner,
we implemented a neural network classifier, which can be explained
by plotting saliency maps. This enabled us to make a comparison
between identifying feature importance statistically and as an ex-
planation of classification models. We used a neural network model
designed in the Deep Network Designer in MATLAB. After the
training of the model, we plotted confusion matrices to evaluate
the model’s performance on both the test and training data. The
confusion matrix for testing data demonstrated a validation accu-
racy of 72.4%. With an accuracy of 99.2%, the confusion matrix for
training data achieved nearly perfect classification performance
with very few misclassifications. The significant inconsistency in
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performance between training and testing suggests that the model
overfitted to the training set, failing to generalize well to new data.
Nevertheless, the findings are still congruent with the primary goal
of our study, which was to demonstrate that using EEG technology
allowed us to infer the direction of influences between electrodes,
thereby providing deeper insight into emotion processing in the
human brain. It is notable that the accuracy achieved using our
model (72.4%) is comparable to the highest accuracy obtained with
the classification learner tool (73.3%).

Finally, by completing neural network analysis, we once again
showed that the importance of connectivity features for classifica-
tion by the neural network can be visualized by plotting saliency
map data as an EEG connectivity map.

Figure 2: Feature connection map for average gradient map
The most significant connections in classification are indicated by dark

blue arrows.

5 CONCLUSION
In this study, we demonstrated that emotions can be classified suc-
cessfully based on EEG data using connectivity matrices. After test-
ing the proposed method on four different datasets, we found that
the highest classification accuracy was achieved with the fourth
dataset 73.3%, while the lowest accuracy was observed with the
first dataset 26.2%. The fourth dataset was obtained in response
to movies rather than pictures, which took longer. This may ex-
plain why images did not influence distinguishable connectivity
patterns. Additionally, we found that neural network classifiers
generally performed best on the fourth dataset. After conducting
further analysis on the fourth dataset using both statistical meth-
ods and neural networks, we were able to visualize which features
had the greatest influence and determine the direction of their im-
pact. We extracted explanations of which connectivity pairs are
more important for distinguishing emotions, providing valuable
insights that could be used in neuroscientific studies. The ability
to classify emotions accurately from EEG signals and visualize the
direction of feature influences opens doors for various practical
applications, such as real-time emotion recognition systems and
adaptive human-computer interfaces. Moreover, this finding leaves
space for improvements in emotion classification by exploring alter-
native methods, such as the complex Pearson correlation coefficient
(CPCC). Although this method may provide robust results, when

combined with the Granger causality method crucial for its abil-
ity to reveal the directional influence between pairs of electrodes,
as demonstrated in our study, it could significantly enhance our
understanding of neural dynamics in emotion processing.

ACKNOWLEDGMENTS
Wewould also like to extend our gratitude to the Institute of Pharma-
cology and Experimental Toxicology, Faculty of Medicine, Univer-
sity of Ljubljana, for generously providing us with the EMOTIONS
1 and EMOTIONS 2 datasets.

REFERENCES
[1] [n. d.]. Passive viewing of emotion-evoking pictures: Multimodal application of

functional near-infrared spectroscopy and electroencephalography. Master’s thesis.
Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine,
University of Ljubljana. Data collected and pre-processed within the framework
of the Master’s thesis.

[2] Charu C Aggarwal et al. 2018. Neural networks and deep learning. Vol. 10.
Springer.

[3] K. Blinowska and P. Durka. 2006. Electroencephalography (EEG). (2006). https:
//doi.org/10.1002/9780471740360.ebs0418

[4] Mike X Cohen. 2014. Analyzing neural time series data: theory and practice. MIT
press.

[5] Ruo-Nan Duan, Jia-Yi Zhu, and Bao-Liang Lu. 2013. Differential entropy feature
for EEG-based emotion classification. In 6th International IEEE/EMBS Conference
on Neural Engineering (NER). IEEE, 81–84.

[6] Issam El Naqa and Martin J Murphy. 2015. What is machine learning? Springer.
[7] Katerina Hlaváčková-Schindler, Milan Paluš, Martin Vejmelka, and Joydeep Bhat-

tacharya. 2007. Causality detection based on information-theoretic approaches
in time series analysis. Physics Reports 441, 1 (2007), 1–46.

[8] E. W. Lang, A. M. Tomé, I. R. Keck, J. M. Górriz-Sáez, and C. G. Puntonet. 2012.
Brain Connectivity Analysis: A short survey. Computational Intelligence and
Neuroscience 2012 (2012), 1–21. https://doi.org/10.1155/2012/412512

[9] Emiel Por, Maaike van Kooten, and Vanja Sarkovic. 2019. Nyquist–Shannon
sampling theorem. Leiden University 1, 1 (2019), 5.

[10] Gerwin Schalk, Dennis McFarland, Thilo Hinterberger, Niels Birbaumer, and
Jonathan Wolpaw. 2004. BCI2000: A General-Purpose Brain-Computer Interface
(BCI) System. IEEE Transactions on Biomedical Engineering 51, 6 (2004), 1034–1043.
https://doi.org/10.1109/TBME.2004.827072

[11] Anil Seth. 2007. Granger causality. Scholarpedia 2, 7 (2007), 1667.
[12] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside

convolutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:
1312.6034 (2013). https://doi.org/10.48550/arxiv.1312.6034

[13] Michal Teplan et al. 2002. Fundamentals of EEG measurement. Measurement
science review 2, 2 (2002), 1–11.

[14] The MathWorks Inc. 2022. MATLAB. Version R2022a. https://www.mathworks.
com/

[15] L. Wang. 2019. Test and evaluation of advertising effect based on EEG and eye
tracker. Translational Neuroscience 10, 1 (2019), 14–18. https://doi.org/10.1515/
tnsci-2019-0003

[16] X. Wang, D. Nie, and B. Lu. 2014. Emotional state classification from EEG data
using machine learning approach. Neurocomputing 129 (2014), 94–106.

[17] W. Zheng, W. Liu, Y. Lu, B. Lu, and A. Cichocki. 2018. EmotionMeter: A Mul-
timodal Framework for Recognizing Human Emotions. IEEE Transactions on
Cybernetics (2018), 1–13. https://doi.org/10.1109/TCYB.2018.2797176

https://doi.org/10.1002/9780471740360.ebs0418
https://doi.org/10.1002/9780471740360.ebs0418
https://doi.org/10.1155/2012/412512
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.48550/arxiv.1312.6034
https://www.mathworks.com/
https://www.mathworks.com/
https://doi.org/10.1515/tnsci-2019-0003
https://doi.org/10.1515/tnsci-2019-0003
https://doi.org/10.1109/TCYB.2018.2797176

	Abstract
	1 INTRODUCTION
	2 METHODS
	2.1 MATLAB and EEGLAB
	2.2 Connectivity Measurements and Granger Causality
	2.3 Machine Learning and Classification Learner Tool
	2.4 Neural Networks and Neural Network Classification 
	2.5 Statistical Analysis of Feature Importance

	3 DATASETS
	4 EXPERIMENTS AND RESULTS
	4.1 Statistical Analysis
	4.2 Neural Network Analysis

	5 CONCLUSION
	Acknowledgments
	References

