
Learning Multi-Level Skill Hierarchies with Graphwave
Simon Bele

sb95099@student.uni-lj.si
University of Ljubljana
Faculty of Computer and
Information science,
Ljubljana, Slovenia

Jure Žabkar
jure.zabkar@fri.uni-lj.si
University of Ljubljana
Faculty of Computer and
Information science,
Ljubljana, Slovenia

ABSTRACT
We introduce a novel framework for learning multi-level skill hi-
erarchies in reinforcement learning environments by leveraging
structural similarities in state-space graphs. To obtain structural
embeddings, we use the Graphwave algorithm, which places struc-
turally similar states in close proximity in the latent space. In the
latent space, we perform hierarchical clustering of states while
respecting the topology of the state-space graph. At different levels
of the hierarchy we learn the options that represent the skills; a
skill at each level of the hierarchy is defined using the skills from
the level below. We compare our approach with the state-of-the-
art method across several environments. Our results show that
structural embeddings can speed up option learning significantly
in certain domains.

KEYWORDS
Skill Hierarchy, Reinforcement Learning, Options, Structural simi-
larity, Graph Embeddings

1 INTRODUCTION
In Reinforcement Learning (RL), an agent learns to make decisions
by interacting with an environment; it operates on the principles of
trial and error and obtains positive or negative feedback (rewards)
from the environment. The overall goal of the agent is to maximize
the cumulative rewards. Traditional RL approaches can struggle
with scalability and efficiency as the complexity of the environment
increases or the task become increasingly difficult.

A possible way to tackle this challenge is to introduce skill hi-
erarchies in RL [1, 6]. Skill hierarchies enable the decomposition
of complex tasks into simpler sub-tasks, usually improving the
generalization of learned behaviors across different scenarios. This
usually leads to a more efficient learning process but also produces
more robust and interpretable actions.

Traditional approaches in developing these hierarchies have pri-
marily focused on single-level structures, where skills are often
defined through predefined policies or through the clustering of
state transitions without considering the deeper structural relation-
ships between these transitions. Recently, Evans et al. [3] introduced
a method for learning skill hierarchies based on Louvain clustering
of the state-space graph, which optimizes its modularity.

In this paper, we introduce an approach that goes beyond modu-
larity: we use the Graphwave algorithm that identifies structural
similarities within a graph. We cluster structural embeddings in
latent space, thus providing a more robust foundation for skill learn-
ing. Our approach also preserves the topology of the state graph

and so enables us to learn the options framework on the obtained
clustering.

We evaluate our method by comparing it to the approach of
Evans et al. [3]. We integrate our code into their framework and
observe the learning efficiency on four domains. We show that in
three out of four, our method performs significantly better while
in the Four Rooms domain that features extreme modularity, the
approach of Evans et al. outperforms ours.

2 RELATEDWORK
A common approach in reinforcement learning involves modeling
the underlying Markov Decision Process (MDP), wherein a policy
𝜋 : 𝑆 ×𝐴 → [0, 1] is learned to maximize a reward function. Specifi-
cally, the action-value function𝑄𝜋 (𝑠, 𝑎) for a policy 𝜋 encapsulates
the expected reward for states in the environment. The action-value
function adheres to the Bellman equations, and the task can thus be
rephrased as optimizing these equations to find the optimal policy.

The options framework in reinforcement learning is a well-
established method for reasoning across multiple levels of tem-
poral abstraction, effectively implementing Semi-Markov Decision
Processes [4, 8].

An option is defined by a 3-tuple𝜔 = (𝐼𝜔 , 𝜋𝜔 , 𝛽𝜔 ), where 𝐼𝜔 ⊆ 𝑆

represents the subset of the state space in which the option is exe-
cutable, 𝜋𝜔 : 𝑆 ×𝐴 → [0, 1] is a policy determining the probability
of taking action 𝑎 in state 𝑠 , and 𝛽𝜔 : 𝑆 → [0, 1] specifies the termi-
nation condition, indicating the probability of option termination
in a given state.

To hierarchically cluster the state space, one can derive higher-
level options over lower-level options, where the initiation set of
the higher-level option is the union of initiation sets of lower-level
options, thereby enabling options at multiple time scales.

Training options across multiple time scales necessitates gen-
eralizing the usual Bellman equations to be defined over options
rather than actions, termed intra-option learning [7].

The MDP induces a state transition graph, with nodes represent-
ing states and edges denoting possible actions between states.

Several approaches leverage the state transition graph of the
underlying MDP to learn skills. A notable advancement by Xu et al.
[9] employs the Louvain graph clustering algorithm to partition the
state transition graph into clusters, subsequently defining options
as traversals across the aggregate graph of these clusters.

Previous efforts to create single-level skill hierarchies have pri-
marily utilized different measures of centrality or various graph
partitioning algorithms.

Evans et al. [3] introduce a multi-level skill hierarchy trained on
the entire hierarchical clustering of Louvain. Due to the intractable
problem of modularity maximization, the greedy-natured Louvain



Simon Bele and Jure Žabkar

algorithm optimizes for moving nodes between partitions at each
step if and only if this move results in a positive modularity gain.
This can be seen as a local approach to modularity optimization.
They employ macro-Q learning [5] and intra-option learning [7] to
train hierarchical agents.

The above approach is novel in producing the first multi-level
skill hierarchy, where it is produced automatically with no human
intervention. Through it they obtain options reflecting optimizing
for modularity, which they show to be useful for navigating at the
top-most level of the skill hierarchy.

3 METHODOLOGY
3.1 Structural similarity embeddings
To obtain an embedding of nodes that places structurally similar
nodes in close proximity within the latent space, we employ Graph-
wave [2], a methodology that provides strict guarantees regarding
the separation of structurally equivalent nodes.

Consider an undirected graph 𝐺 = (𝑉 , 𝐸) with its graph Lapla-
cian defined as 𝐿 = 𝐷 −𝐴, where 𝐷 is the degree matrix and 𝐴 is
the adjacency matrix. Let the eigenvector decomposition of 𝐿 be
given by

𝐿 = 𝑈Λ𝑈𝑇 , (1)

where𝑈 is the matrix of eigenvectors and Λ is the diagonal matrix
of eigenvalues.

By applying a heat diffusion wavelet 𝑔𝑠 (𝜆) = 𝑒−𝜆𝑠 , define the
spectral graph wavelet centered at node 𝑎 as

Ψ𝑎 = 𝑈 Diag(𝑔𝑠 (𝜆1), . . . , 𝑔𝑠 (𝜆𝑁 ))𝑈𝑇 𝛿𝑎, (2)

where 𝛿𝑎 is the Dirac delta function at node 𝑎.
To circumvent computational intractability [2], the wavelet is

treated as a probability distribution over the graph:

𝜙𝑎 (𝑡) =
1
𝑁

𝑁∑︁
𝑚=1

𝑒𝑖𝑡Ψ𝑚𝑎 , (3)

for time point 𝑡 . The empirical characteristic function is then sam-
pled and transformed into a vector embedding:

𝜒𝑎 = [Re(𝜙𝑎 (𝑡𝑖 )), Im(𝜙𝑎 (𝑡𝑖 ))]𝑡1,...,𝑡𝑑 , (4)

with 𝑑 being the number of samples.
This resulting 2𝑑-dimensional embedding ensures that struc-

turally equivalent nodes in the graph will be at most a predefined 𝜖
distance apart in the 𝓁2 norm, thereby providing rigorous guaran-
tees on the proximity of such nodes [2].

3.2 Clustering
To hierarchically cluster nodes based on their embeddings, our
approach utilizes an agglomerative clustering algorithm.

This algorithm iteratively merges the nearest clusters based
on the average linkage criterion. To maintain the integrity of the
graph’s topology, clusters are only compared if there exists a direct
path between them that bypasses other clusters. The height of the
hierarchy was chosen to match the height of Louvain for the sake
of fair comparison between the two approaches [3], but could also
be defined through any dendrogram cutting strategy.

3.3 Option learning
For the sake of comparisons with Evans et al. [3], we similarly
construct the skill hierarchy as follows.

Let ℎ represent the number of partitions produced by our algo-
rithm when applied to the state transition graph. Each of these ℎ
partitions defines a skill layer, forming an action hierarchy with
ℎ levels of abstract actions above primitive actions. Each hierar-
chy level consists of skills designed to efficiently navigate between
clusters of the state transition graph.

We define options for moving from cluster 𝑐𝑖 to cluster 𝑐 𝑗 is
defined by: initiation states in 𝑐𝑖 , a policy to navigate from any
state in 𝑐𝑖 to a state in 𝑐 𝑗 , and termination upon reaching 𝑐 𝑗 .

Leveraging the hierarchical structure of the partitions, we define
skills at each level of the hierarchy using the skills from the pre-
ceding level. At each hierarchy level, the policies for higher-level
actions call actions (either options or primitive actions) from the
level below, with primitive actions only invoked directly at the base
level.

4 EVALUATION
4.1 Domains
The skill hierarchy is evaluated in four environments (Figure 1), the
first three of which are different examples of the rooms environment.
An empty room, two rooms connected by a bottleneck and four
rooms as in [3]. The agent is given a starting position and a goal
position and attempts to navigate between them as effectively as
possible. The last domain we look at is the Towers of Hanoi, a
classic mathematical puzzle. It involves moving a set of disks from
one peg to another, following specific rules.

Each of the rooms environments feature four basic movements:
north, south, east, and west. These movements steer the agent in
the chosen direction unless obstructed by a wall, in which case the
agent stays in place. Each action incurs a penalty of -0.001, with
a bonus of +1.0 awarded upon reaching the goal state. Each run
begins from a designated start state and aims for a goal state.

The Towers of Hanoi involves four disks of varying sizes posi-
tioned on three pegs. An episode commences with all disks stacked
on the leftmost peg. Actions involve moving the top disk from one
peg to another, ensuring no larger disk is placed on a smaller one.
Each action incurs a -0.001 penalty, with an additional +1.0 reward
granted upon achieving the goal state, which is when all disks are
stacked on the rightmost peg.

4.2 Structural Skill Hierarchy
The hierarchy obtained through the above clustering method will
cluster structurally similar nodes together.

To showcase an example, we show the hierarchical clustering
of Two Rooms (Figure 2), at the lowest level the walls of the room
as well as the bottleneck state are clustered together. The corners
of the room are given their own individual clusters and then the
center of the room is partitioned symmetrically with respect to the
bottleneck state. The second level then merges most of the interiors
of the individual rooms while still giving the corner states their
individual clusters. The final level then merges the corner states
into the walls of the room and gives three clusters which are the



Learning Multi-Level Skill Hierarchies with Graphwave

(a) Empty room (b) Two rooms (c) Four rooms (d) Towers of Hanoi

Figure 1: The environments used in the experiments. (a) Empty Room: A simple environment with no obstacles. (b) Two Rooms:
An environment divided into two connected rooms. (c) Four Rooms: A more complex environment divided into four connected
rooms. (d) Towers of Hanoi: A classic puzzle environment where the goal is to move disks between pegs according to specific
rules.

Figure 2: Hierarchical clustering of the Two Rooms environment at various levels. The lowest level (left-most image) clusters
walls and bottleneck states, the second level (middle image) merges room interiors while keeping corners separate, and the
final level (right-most image) combines corners into walls, resulting in three main clusters.

two interiors of the rooms and the final cluster essentially contains
these two rooms.

4.3 Results
To compare with Evans et al. [3], in the analysis, we created options
by building the full state transition graph and then learned their
policies offline using macro-Q learning [5].

We trained all hierarchical agents with macro-Q learning and
intra-option learning [7]. Shaded areas in the learning curves show
the standard error, based on 40 independent trials.

The parameters set were the same as in [3], a learning rate of
𝛼 = 0.4, a discount factor of 𝛾 = 1, and initial action values of
𝑄0 = 0. An 𝜖-greedy strategy with 𝜖 = 0.1 was used for exploration.
The shown learning curves represent evaluation performance. Post
each training epoch, the policy was assessed (with exploration and
learning disabled) in a separate environment instance.

We observe (Figure 3) that on the domain of Empty Room we
quickly converge to a rewarding strategy before eventually seeing
the Louvain skill hierarchy catch up. In the Two Room environment
we observe much faster convergence as well as Louvain starting
to catch up relatively slowly. The Four Rooms domain favours the
Louvain skill hierarchy clearly, one might deduce this due to it
being more important to traverse between rooms quickly which

is optimally done through a clustering that relies on modularity.
We outperform the Louvain skill hierarchy in the Towers of Hanoi,
converging faster and having it catch up.

5 CONCLUSIONS
In this paper, we introduced a novel approach to hierarchical skill
learning by leveraging Graphwave to obtain structural embeddings
of the states. By clustering the states and preserving the topology of
the state-space graph, we enabled efficient option learning, where
options represent skills at various levels of abstraction. In our exper-
iments, we compared the proposed approach to the state-of-the-art
method by Evans et al. [3] and showed that our method can speed
up the learning process significantly in some cases.

However, in some domains, optimizing for modularity obviously
yields better skill hierarchies and faster option learning. It remains
an open question for future research to determine which properties
of a domain’s state-space graph are more suited for each method.
This question is related to another open challenge, namely the
characterizations of a useful skill: for a given complex task, what
defines a proper skill hierarchy.

Future work could also explore incrementally building the state-
space graph and deriving the optimal skill hierarchy for the partially
observed graph. This approach may influence how confidently the



Simon Bele and Jure Žabkar

Figure 3: The following figure illustrates the performance of hierarchical agents using Louvain and Graphwave skill hierarchies
in different environments: Empty Room, Two Rooms, Four Rooms, and Towers of Hanoi. We observe that in the Empty Room
environment, both skill hierarchies converge quickly to a rewarding strategy, with Graphwave performing better initially but
Louvain catching up over time. In the Two Rooms environment, Graphwave converges significantly faster than Louvain. The
Four Rooms domain favors the Louvain skill hierarchy, likely due to the importance of quickly traversing between rooms using
a clustering that relies on modularity. In the Towers of Hanoi, Graphwave outperforms Louvain, showing faster convergence
and maintaining an advantage throughout. The provided plots show the reward progression over epochs for each environment,
highlighting the differences in performance and convergence rates between the Louvain and Graphwave skill hierarchies.

partitioning is constructed over time, as new information becomes
available and the graph evolves. One can develop algorithms that
dynamically adjust the skill hierarchy based on the current state
of the graph, ensuring that the hierarchy remains optimal as the
environment changes. One may also pursue a similar direction in
constructing skill hierarchies in problems that involve continuous
state-spaces.

REFERENCES
[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Archi-

tecture. Proceedings of the AAAI Conference on Artificial Intelligence 31, 1 (Feb.
2017). https://doi.org/10.1609/aaai.v31i1.10916

[2] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning
Structural Node Embeddings Via Diffusion Wavelets. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1320–1329. https://doi.org/10.1145/3219819.3220025 arXiv:1710.10321 [cs, stat]

[3] Joshua B. Evans and Özgür Şimşek. 2024. Creating Multi-Level Skill Hierarchies
in Reinforcement Learning. arXiv:2306.09980 [cs]

[4] Marlos Machado, Andre Barreto, and Doina Precup. 2021. Temporal Abstraction
in Reinforcement Learning with the Successor Representation.

[5] Amy Mcgovern, Richard Sutton, and Andrew Fagg. 1999. Roles of Macro-Actions
in Accelerating Reinforcement Learning. (Feb. 1999).

[6] Matthew Riemer, Miao Liu, and Gerald Tesauro. 2018. Learning Abstract Options.
CoRR abs/1810.11583 (2018). arXiv:1810.11583 http://arxiv.org/abs/1810.11583

[7] Richard S Sutton, Doina Precup, and Satinder Singh. 1998. Intra-Option Learning
about Temporally Abstract Actions.. In ICML, Vol. 98. 556–564.

[8] Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in reinforcement learn-
ing. Artificial Intelligence 112, 1 (1999), 181–211. https://doi.org/10.1016/S0004-
3702(99)00052-1

[9] Xiao Xu, Mei Yang, and Ge Li. 2018. Constructing Temporally Extended Ac-
tions through Incremental Community Detection. Computational Intelligence and
Neuroscience 2018, 1 (2018), 2085721. https://doi.org/10.1155/2018/2085721

https://doi.org/10.1609/aaai.v31i1.10916
https://doi.org/10.1145/3219819.3220025
https://arxiv.org/abs/1710.10321
https://arxiv.org/abs/2306.09980
https://arxiv.org/abs/1810.11583
http://arxiv.org/abs/1810.11583
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1155/2018/2085721

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Structural similarity embeddings
	3.2 Clustering
	3.3 Option learning 

	4 Evaluation
	4.1 Domains
	4.2 Structural Skill Hierarchy
	4.3 Results

	5 Conclusions
	References

