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ABSTRACT
In this study, mathematical decision-making tasks were used to pro-
vide further details on the flow of information across a number of
brain regions, with the objective of finding out whether connectiv-
ity patterns are informative in predicting decisional outcomes. The
experiment consisted of showing 50 mathematical expressions to
each participant, and they decided on their correctness by pressing
buttons. Neural activity and button presses were recorded by means
of the g.tec Nautilus EEG device, equipped with 64 electrodes. A
detailed epochs analysis was conducted with regard to participant
responses. Advanced techniques of signal analysis were applied,
including Granger causality, Phase Locking Value, and Complex
Pearson Correlation Coefficient. This research aims to determine
how the following tools could distinguish events from states, get
aware of their limitations, and develop novel analysis techniques
for better discrimination of brain processes. This research is specifi-
cally focused on using mathematical reasoning as a model to study
decision-making processes. Our objective is to test existing and
develop novel methods for gaining deeper understanding of the
brain dynamics involved in discrete cognitive activities.
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1 INTRODUCTION
1.1 Background
Electroencephalography (EEG) devices are core tools in neuro-
science for the monitoring of brain activity through the detection
of electrical potentials in different places on the scalp [4]. They find
applications in a wide variety of both clinical and research settings
during the investigation of brain activity and connectivity. The abil-
ity to understand the brain processes is crucial for advancements in
neuroscience, medical diagnostics and brain-computer interfaces.
Identification and improvement of methods that are capable of clas-
sifying events and explaining the underlying decision process is
also of a great importance.

In this study we aim to set the whole pipeline for conducting
such research, which consists of data acquisition and analysis. For
our brain process of interest we selected mathematical reasoning,
which exemplifies decision-making processes. It is selected because
of its complexity that enables layered analysis of sub processes, as
mathematical thinking involves complex cognitive processes that
engage multiple brain regions. Mathematical decision-making tasks
require the integration of numerical processing, working memory,

and logical reasoning, making them an ideal for studying brain
connectivity.

1.2 Objectives
Our primary objective with this research is to assess existing tech-
niques for connectivity analysis and to develop a comprehensive
pipeline for the analysis of brain processes (during mathematical
decision-making tasks), with the focus on creation and refinement
of methodologies that would be able to classify and explain these
processes. Through the comprehensive analysis we also aim to
validate two specific hypotheses.

• H1 - Mathematical thinking causes unique connectivity
patterns, differentiable from resting state brain activity.

• H2 - True and false answers can be distinguished by their
EEG signals.

The motivation behind this study is to contribute to the un-
derstanding of cognitive processes by providing insights into the
neural dynamics of decision-making.

2 LITERATURE REVIEW
EEG has established itself as an invaluable tool in cognitive neu-
roscience, particularly for exploring brain activity in real time. Its
application in understanding the neural mechanisms of mathemat-
ical decision-making has drawn considerable interest due to the
dynamic and complex nature of the task. Previous studies have
demonstrated that specific brain regions, particularly within the
frontal and parietal lobes, are significantly active during mathemat-
ical cognition, reflecting the intricate process of problem-solving
and numerical reasoning [1, 2].

Basic methods for EEG analysis rely on statistical analysis of
independent electrode signals, and do not enable reliable differentia-
tion of complex brain activities. This can be achieved by additionally
considering the mutual signal interdependence as a reflection of
utilization of brain networks, known as brain connectivity analysis.
There are several accepted brain connectivity analysis methods,
which include Phase Locking Value (PLV), Weighted Phase Locking
Index (wPLI), Complex Pearson Correlation Coefficient (CPCC) [7]
and Granger Causality (GC). Most methods including PLV, wPLI
and CPCC are not directional and rely on analyzing phase differ-
ences between the electrode signals. GC is a directional method,
developed by Clive Granger in the 1960s, and determines whether
one time series can help predicting another one. Applied on EEG
data it can reveal directional influences between different neural
regions covered by corresponding EEG electrodes.

Granger causality has been widely used in neuroscience to ex-
plore the temporal dynamics of brain activity. For example, it has
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been applied to EEG signals to investigate the functional connec-
tivity between different brain areas during various cognitive states.
Recent research by Seth, Barrett, and Barnett (2015) [6] has further
demonstrated the effectiveness of GC in identifying directed func-
tional interactions in neuroscience and neuroimaging time-series
data. Their findings indicate that GC can reveal insights into the
functional circuits involved in perception, cognition, and behavior.
This research also emphasizes both the theoretical foundations and
practical applications of GC while discussing its limitations and
computational strategies, thus solidifying its role as a crucial tool
in neuroscience.

With the advances in artificial intelligence the use of artificial
neural networks also affects EEG analysis. One of the most promis-
ing artificial neural network architectures for classification of EEG
data is EEGNet [3], a compact convolutional neural network de-
signed for EEG-based brain-computer interfaces. Recently, it has
been shown that neural networks can contribute to understanding
of underlying processes, by computing saliency maps [5]. As such,
artificial neural networks could also be extended and utilized to
reveal connectivity patterns.

3 METHODOLOGY
3.1 Participants
For the purpose of the study, we recruited 15 participants from
the university. Each participant provided written informed consent
before participating in this experiment. This work was approved by
the university’s ethical committee to ensure the study conformed
to ethical standards for studies involving human participants.

3.2 Equipment
• EEG Headset: g.tec Nautilus EEG device with 64 channel

electrodes.
• Base Station: Connected to the EEG headset for data trans-

mission.
• Trigger Box: Connected to the base station, equipped with

two response buttons.
• Optical Sensor: Connected to the trigger box to detect

changes in the visual stimuli.
• Recording Software: g.recorder for capturing and storing

EEG data.

3.3 Procedure
The experiment was set in the following way:

A participant was seated comfortably in a noise-free, dimly lit
room to help eliminate other external factors that might cause
discomfort. An EEG headset was fitted on the head of the partic-
ipant, making sure that the contact of all the electrodes on the
scalp is good to ensure high-quality signals. The headset was then
connected to the base station and trigger box.

The experiment consisted of 50 mathematical equations that
were shown for 10 seconds each on a computer screen, where the
research participants had to determine whether the equation was
correct or incorrect. Responses were marked by pressing one of
the two corresponding buttons connected to the trigger box. At the
end of each equation, there was a resting phase of 3 seconds where
the subjects could rest before the next equation appears.

An optical sensor was used to exactly capture the display time
of each equation, thus ensuring correct synchronization with the
visual presentation and EEG data. This setup allowed for exact
timing of participant responses relative to the presentation of the
equations.

In this experiment we recorded EEG data using the g.recorder
software, that captured the continuous EEG signals on all activi-
ties of 64 channels at a sampling rate of 250 Hz. The software also
recorded the presentation timings of the stimuli and participant re-
sponses according to the detection of the optical sensor and trigger
box. This setup ensured that all relevant events will be accurately
time-stamped and synchronised with the EEG data.

Each of the participants completed the experiment in an individ-
ual session, which in total lasted approximately 15 minutes. The
data was stored safely for later preprocessing and analysis.

3.4 Data Collection
Figure 1 shows the raw EEG data recorded from one of the subjects
while performing the mathematical decision-making task. EEG
signals, captured from 64 channels, are shown here along with their
respective labels on the y-axis, which represent electrode positions
at different locations on the scalp, and the x-axis represents time in
seconds.

In this visualization, specific triggers are marked to indicate im-
portant events during the experiment. The green line represents
a trigger at the moment the equation on screen changes, thus sig-
naling the beginning of a new arithmetic problem. This trigger is
important in synchronizing EEG data with the exact moment each
equation is presented to the participant, thus providing the ability
to analyze the neural response to the stimulus very precisely.

The red line marks the trigger corresponding to the event of a
user pressing the “incorrect” button, thus signaling his/her decision
that the equation presented is wrong.

Although not shown in the current image, a blue line is used as
a trigger to mark the event when a participant presses the “correct”
button, indicating their decision that the equation is correct.

3.5 Data Preprocessing
One of the most important steps in satisfying the quality and re-
liability of the recorded signal before detailed analysis is the pre-
processing of EEG data. MATLAB with the EEGLAB toolbox was
used for this purpose, where advanced functionalities were applied
to deal and handle with the intricate nature of EEG data. The pre-
processing pipeline started by filtering all frequencies of the raw
EEG data outside the frequency range of interest. That was easily
accomplished with the help of a bandpass filter with the limiting
frequencies of 0.1 Hz and 45 Hz. This filtering step was quite impor-
tant to avoid noise or other effects due to muscle activity, electrical
interference, etc.

After filtering, the EEG data was re-referenced to the common
average reference. This involved averaging the signal from all elec-
trodes and subtracting this average from each individual electrode’s
signal to give clarity to the signal and remove common noise. Com-
mon average referencing is conducted as a standard operation in
preprocessing when carrying out EEG. This operation helped to
normalize data across different channels.
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Figure 1: Visualisation of the raw signals data.

Artifacts were removed by Independent Component Analysis
(ICA), where the EEG signal was decomposed into independent com-
ponents. With the help of ICA and the ICLabel add-on in MATLAB,
components related to common artifacts due to eye movements,
blinks, and muscle activity were identified and isolated. Removing
these artifact components from the data ensured that the remaining
signals are more representative of the true neural activity.

3.6 Hypothesis Testing
The basic idea of our hypothesis testing approach revolves around
developing and training classification methods on epochs that
we define specifically around key events (equation change, incor-
rect/correct marking). For example, for testing the first hypothesis
H1, two primary states can be defined:

• Rest - Epochs taken from a 3-second window just before
a new equation appears - shown by this green line in our
recording setup. This is the period not active for making
any judgment, which in turn gives our baseline or rest state.

• Active - In contrast active state epochs taken from a 3-
second window just prior to the participants’ responses
since these active states are thought to carry neural signa-
tures related to the cognitive processes of judgment and
decision making on the mathematical expressions.

In this way we can directly compare neural activity in both
"decision-making" and "resting" conditions, with the specific objec-
tive of the identification of distinct patterns that could validate our
hypotheses about the differential brain connectivity in different
cognitive states.

For the second hypothesis, H2, testing adapts methodologies
developed for H1 but focus on epochs particularly related to the
correctness of the participant’s response. It is hypothesized that
EEG signals could differentiate between true and false answers of
participants in mathematical decision-making tasks. The epochs

were extracted in a similar way with 3 second intervals before the
blue and red triggers in the dataset.

3.7 Connectivity Matrices
Connectivity matrices serve as a fundamental tool in neuroscience
for visualizing and quantifying the intricate patterns of neural
interactions within the brain. These matrices can be derived with
the use of the different connectivity analysis techniques mentioned
above.

In Figure 2 we can see the Granger causality matrices obtained
from one of the subjects’ EEG recordings in resting and active
cognitive states respectively. Each matrix describes the directional
influences between pairs of EEG electrodes over the scalp. The
x-axis labels denote the influencing electrodes, and the y-axis labels
indicate the influenced electrodes. Each cell in this matrix thus
corresponds to a pair of electrodes; the color of each cell reflects
the strength of causal influence from the electrode on the x-axis to
the electrode on the y-axis.

The color scale, ranging from 0 to 0.18, is provided at the right
side of the matrices. The colors change from cool colors like blue,
indicating very weak causal influence, to warm colors like yellow,
representing very strong influences. This scale will help the eye in
assessing the strength and distribution of connectivity across the
brain.

4 RESULTS
After segmenting the epochs and preparing the EEG data from all
participants, we used the EEGNet neural network to classify resting
and active states, in order to validate H1. The network was trained
with 80% of the data and tested with the remaining 20%.

This resulted in a classification accuracy of about 84%, show-
ing that distinct neural connectivity patterns are present during
mathematical decision-making tasks compared to resting states.
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Figure 2: Visualisation of the connectivity matrices of rest and active states.

The findings support our hypothesis that, mathematical thinking
causes unique connectivity patterns, differentiable from resting
state brain activity. This suggests the promising capability of the
EEGNet to discriminate between rest and active states based on the
neural data collected around the event-defined epochs.

We also did some testing on the second hypothesis H2. Initial
tests using the EEGNet neural network for epochs related to cor-
rect and incorrect responses resulted in classification accuracies
of about 50%, which is clearly insufficient. These results suggest
two possible explanations: either the EEG signals do not contain
enough distinguishing information, or the applied methods, are not
yet optimized to detect subtle differences in brain activity.

Given these results, we will continue to refine our analytical
methods and to explore alternative models for a better representa-
tion of neural dynamics. Hypothesis H1 has proven to be a more
accessible goal, while hypothesis H2 presents a greater challenge.
Should we confirm H2, it could revolutionize how we estimate
knowledge and decision-making processes based on neural data.

5 CONCLUSION
The main objective of this research is the development and enhance-
ment of methodologies to analyse EEG signals during cognitive
tasks, with a special emphasis on mathematical decision-making.
The strategy taken in this research provides a model for future
works on more complex cognitive phenomena. It indicates the need
for precise acquisition of data, sophisticated preprocessing strate-
gies, and new analytical techniques in an attempt to capture and
interpret correctly the activity in the brain.

In summary, this research adds a great deal into the field of devel-
opment of methodologies that further improve our understanding

of cognitive processes and pushes the boundaries of how we can in-
teract with technology using Brain Computer Interfaces (BCI) and
analyse neurological conditions. Further evolution of these meth-
ods is likely to close the gap between human cognitive functions
and machine interpretation, setting the stage for possible future
advances that may change neurological healthcare and technology
interfacing.
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