
Empirical evaluation of sequential, parallel and distributed
implementations of k-means clustering

Andrej Perković

89201045@student.upr.si

Faculty of Mathematics, Natural

Sciences and Information Technologies

University of Primorska

Glagoljška ulica 8

SI-6000 Koper, Slovenia

Aleksandar Tošić

aleksandar.tosic@upr.si

Faculty of Mathematics, Natural

Sciences and Information Technologies

University of Primorska

Glagoljška ulica 8

SI-6000 Koper, Slovenia

ABSTRACT
In this paper we present a sequential, parallel and distributed im-

plementation of the infamous k-means clustering algorithm. We

perform extensive testing of all three implementations on state the

art hardware, and show the performance benefits of paralelliza-

tion. The research was inspired by a use-case of reverse logistics

optimisation of wood in Germany, which translates to a facility

location problem. K-means is an heuristic approach that renders

surprisingly good results compared to mathematical modelling ap-

proaches, which are usually not feasible in large inputs as they

belong to the class of NP-hard problems.

KEYWORDS
k-means, Clustering, MPI, Parallel computing

ACM Reference Format:
Andrej Perković and Aleksandar Tošić. 2022. Empirical evaluation of se-

quential, parallel and distributed implementations of k-means clustering. In

Proceedings of Student Computing Research Symposium (SCORES’22). ACM,

New York, NY, USA, 4 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The concept of reusing waste wood is not a new concept [4]. Over

the years, the concept of reusing or recycling waste wood has

been gaining increasing attention both from academia and industry

participates. The potential of reusing waste wood has multiple

benefits such as positive environmental effects as less trees need

to be cut in order to meet the demand of raw materials. Currently,

in most countries waste wood is collected but rarely sorted or

decontaminated. Both of these processes are required before reusing

waste wood. The process of sorting is important to filter out wood

not suitable for reuse, which is mainly due to size constraints, and

type of wood (hardwood/softwood). The decontamination process

involves some mechanical cutting and grinding of parts of the

suitable waste wood to remove unwanted objects (nails, screws,

etc..) and chemical compounds such as adhesives. However, both of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SCORES’22, October 6, 2022, Ljubljana, Slovenia
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

these processes are inherently costly, and the capital and operational

expenses need to be justified by the added value obtained by reusing

waste wood as oppose to buying new raw material [1]. To achieve

this goal, legislation must both subsidise the transition to circular

economy and at the same time impose restrictions or taxes on

excessive 𝐶𝑂2 emissions [14].

Due to lack of investment and motivation by market participants,

most of the waste wood is burned for energy and put into land-

fill where burning is not an option due to heavy contamination.

Sometimes, this is done by accumulation sites directly.

For a successful implementation, new facilities for sorting and

decontamination must be built. These facilities would then offer

recycled wood to the market to fund their operational expenditure.

The placement of such facilities is a logistics optimisation problem

commonly known as the Facility Location Problem (FLP). Ex-

isting research is mostly focused on mathematical modeling and

linear programming to find the near optimal positioning of facilities

considering all constraints [1, 3]. However, due to the computa-

tional complexity of the problem, such solutions are not scalable

for large logistic networks such as the entire EU zone.

K-means clustering has been heavily explored as a heuristic

approach to solving large problems where linear programming

solvers become infeasible [9]. Clustering is a simple and powerful

principle for making sense of large swats of data. It is becoming

more and more important in today’s data-intensive and data-driven

society [7]. 𝐾-means clustering is a rudimentary algorithm for

achieving this goal. It has been one of the researchers’ favorite,

with a plethora of variations and tweaks [16]. It is widely studied,

with the most notable work coming from Lloyd [10], Forgey [5],

Friedman and Rubin [6] and MacQueen [11].

The crux of the algorithm are it’s two steps - the 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

(binding) 𝑠𝑡𝑒𝑝 and the update step. In the former, we assign each

point to the "closest" cluster centroid. In the latter, we recalculate the

centroid of the cluster. Definition of closeness depends on the choice

of the algorithm. The algorithm stops once there are no changes

in the binding. Recently, clustering has been used to improve run-

time of Mixed-Integer Linear Models (MILP) to give the solver

a better initial state then random [2].

In this paper we present an open-source parallel and distributed

implementation of the k-means algorithm. We evaluate our imple-

mentation on the aforementioned use case using data obtained from

the statistical office in Germany. Our initial data-set contains 10.000

accumulation sites, which accumulate used wood. The dataset was

prepared by statistically estimating the amount of wood that should

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SCORES’22, October 6, 2022, Ljubljana, Slovenia Andrej Perković and Aleksandar Tošić

accumulate in an area based on the population density, and average

waste wood created per inhabitant. Both of the aforementioned

statistics were obtained from the statistical office of Germany. Each

site is located using GPS coordinates and distances are computed

using the Cosine-Haversine Formula [13].

2 IMPLEMENTATION
To tackle the problem at hand, we decide to use the weighted 𝑘-

means clustering algorithm. It’s different form the classical version

in that it takes into consideration the capacity of the facility, not just

the Euclidean distance. This way the calculation of the centroid of a

cluster is biased towards the larger collection facilities of that cluster,

which reflects practical needs of placing the treatment facilities

closer to places with more significant accumulation of wood. Hence,

we get the coordinates of the new centroid in the following way:

𝐶 𝑗 (𝑥) =

∑︁
𝑥𝑖 ∈𝐶 𝑗

𝑥𝑖 ·𝑤𝑖∑︁
𝑥 𝑗 ∈𝐶 𝑗

𝑤 𝑗

The new 𝑦 coordinate of the centroid is calculated analogously.

In the assignment step, we assign to each data point the clos-

est centroid. The Euclidean distance formula for calculating the

distance is used here. We assign point 𝑝𝑖 to cluster 𝐶 𝑗 if it holds

that:

𝑗 = argmin

𝑙
{
√︃
(𝑝𝑖 (𝑥) −𝐶𝑙 (𝑥))2 + (𝑝𝑖 (𝑦) −𝐶𝑙 (𝑦))2}

For the initialization, we decided to go with the Frogy method

of randomly choosing 𝑘 points as initial cluster centorids from the

given data set, which is proven to be the best one for the simple

𝑘-means [8].

2.1 Parallel mode
This mode was implemented using the thread pool principle with

the help of Executors class [12]. This allows for dynamic control of

threads, so there is less possibility for human error. Synchronization

was done with the CountDownLatch instances called barrierBind
and barrierUpdate, reinitialized before each assignment and up-

date step, respectively.

For the binding step, each thread gets an approximately equally

sized chunk of Site collection to process. To do this, all threads

need to know location of current centroids. They can safely share

this since they only read the values in this step. There is no critical

sections here regarding sites, since threads are accessing partitions

of the Site list, i.e. disjoint sets. On the other hand, the parallel

program can get into the race condition in the part of the codewhere

a Site object is appended to a cluster’s list of the given objects. For

this reason, we performed the insertion of sites to appropriate lists

sequentially after the computations are done. One would argue that

the ArrayList.add()method could have been made synchronous,

but there are situations where even this can fail. Moreover, doing

this sequentially has a negligible influence on the performance.

In this mode, the stopping condition is returned as the result

value of the function bindCluster(). If it is true, only then do we

enter the block of code that initiates the update step.

Figure 1: An example of the output results using MPI with
10 clusters of 10 000 sites.

For the update step, we call the method updateCentroid(),
which very simply creates a Runnable for each cluster and sends it

to the executor.

2.2 Distributed mode
Thismode is more "independent", or better put, "self-contained" [12].

We implemented it with the MPJ express library [15]. Due to the na-
ture of message passing and MPJ’s underlying implementation in C,
it is not possible to pass complex structures between processes, like

Cluster and Site. We can only natively send the primitive types.

For this reason, we decided to "serialize" the Cluster and Site
arrays. We transform them into double arrays, centroidBuffer,
represented with orange circles in Figure 2, and siteBuffer, repre-
sented with blue circles, respectively. For Cluster transformation,

we extract the 𝑖𝑑 , 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 of each instance. Hence,

for cluster 𝑖 , we have its 𝑖𝑑 at position 3𝑖 , its 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 at position 3𝑖+1
and its 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 at position 3𝑖+2 in centroidBuffer. Similarly for

the sites, we store the 𝑖𝑑 at position 5𝑖 , 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 at 5𝑖 + 1, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒

at 5𝑖 + 2,𝑤𝑒𝑖𝑔ℎ𝑡 at 5𝑖 + 3 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 at 5𝑖 + 4 in the siteBuffer
for the site 𝑖 . Process 0 acts as the master and completes the setup,

that is the transformation into double arrays. After that, we start
looping. Processes loop as long as the stopping condition is not sat-

isfied. To check this, there is a separate buffer for flags, represented

with red and green circles in Figure 2. Each process gets a flag with

the help of the Scatter function to signalize whether it registered

a change in its binding step.

Since the first step in the algorithm is assignment, the coordinator

first broadcasts centroidBuffer and then scatters the siteBuffer.

Empirical evaluation of sequential, parallel and distributed implementations of k-means clustering SCORES’22, October 6, 2022, Ljubljana, Slovenia

Generate

Centroids

MPI.allGatherv()

MPI.scatterv()

MPI.bcast()

Centroid Selection BindingInitialize Sites

Master Workers(n)

Check Stop

 Condition

MPI.gattherv(flags)

MPI.bcast()

MPI.bcast()

Update

MPI.scatterv()

MPI.gatherv()

MPI.scatterv()

(n)

Terminate

Figure 2: An outline of the distributed algorithm’s workflow
using MPI.

We used Scatterv for the latter, since the number of sites need not

be divisible with the number of processes running.

After this, the change flags are returned to the coordinator. It

decides whether the stopping condition has been reached and broad-

casts that to the workers, which is represented with the Check Stop
Condition box on the Figure. Based on that, we either terminate the

calculations or proceed to the update step.

For the update step, we decided to implement it in the way that

all the processes loop through the entire siteBuffer, but only
perform calculations on instances whose 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 corresponds to

the cluster centroid instance the given process is assigned. For this

reason, we used the Allgatherv on the siteBuffer right after the
assignment step, but then we used Scatterv on centroidBuffer
to assign approximately equal number of clusters to each process.

3 RESULTS
To evaluate our implementation, all three versions were imple-

mented and tested for performance. All tests were performed on

the same hardware namely, two AMD Epyc CPU’s with 64 compute

cores each, 512GB of RAM running Linux. To test the performance

we conduct two separate tests with 20 workers for the concurrent

versions. Firstly, we test the impact the number of sites has on

performance by fixing the number of centroids and increasing the

number of sites. Secondly, we test the impact centroids have on

performance by fixing the number of sites.

In Figure 3 we show the scalability of all three implementations.

As expected, we observe a reduction in run-time in both parallel

and distributed over the serial implementation. In Figure 3, we can

see that the communication overhead in distributed computation

pays off only for the heavier half of the test cases. In general, shared

0

25000

50000

75000

0 250000 500000 750000 1000000

Points

R
un

tim
e

(m
s) Version

distributed

parallel

sequential

Figure 3: Performance evaluation of all three implementa-
tions. The results were obtained by increasing the number of
points for each test while keeping the number of centroids
at 100

0

50000

100000

150000

200000

0 2500 5000 7500 10000

Centroids

R
un

tim
e

(m
s) Version

distributed

parallel

sequential

Figure 4: Performance evaluation of all three implementa-
tions. The results were obtained by increasing the number of
centroids for each test while keeping the number of points
at 100.000,00

memory should perform much faster then buffered IO used by the

loopback interface.

Figure 4 shows the impact of centroids on performance. As ex-

pected, the sequential version scales linearly, while both parallel

and distributed see a marginal hit on performance.

4 CONCLUSIONS AND FUTUREWORK
What we did expect is for the parallel and the distributed to perform

much better than the sequential. But what was unexpected is the

difference between MPI’s performance in Figure 3 and 4. It is almost

on par with the performance of the parallel version for the case of

fixed number of sites, yet far from it in the case of fixed number

SCORES’22, October 6, 2022, Ljubljana, Slovenia Andrej Perković and Aleksandar Tošić

of centroids. We attribute this to caching. Array of sites is much

bigger than the latter, so having them fixed could be the reason for

the performance kick.

How different caching strategies and the Cluster Configuration

of the distributed part, better reflecting the real-world performance

of the aforementioned computing, influence on the comparisons

made in this paper; additionally, pushing the boundary of the test

data size further, beyond what can fit in a single computer’s or

server’s memory, and how does that influence the performance of

the two would be the subject of our future work.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the European Commission

for funding the InnoRenew CoE project (H2020 Grant Agreement

#739574) and the PHArA-ON project (H2020 Grant Agreement

#857188) and the Republic of Slovenia (Investment funding of the

Republic of Slovenia and the European Union of the European

Regional Development Fund) as well as the Slovenian Research

Agency (ARRS) for supporting project number J2-2504.

REFERENCES
[1] Michael David Burnard, Črtomir Tavzes, Aleksandar Tošić, Andrej Brodnik, and

Andreja Kutnar. 2015. The role of reverse logistics in recycling of wood products.

In Environmental implications of recycling and recycled products. Singapore :

Springer, cop. 2015, 1–30.

[2] Jean-Thomas Camino, Christian Artigues, Laurent Houssin, and Stéphane Mour-

gues. 2021. MILP formulation improvement with k-means clustering for the

beam layout optimization in multibeam satellite systems. Computers & Industrial

Engineering 158 (2021), 107228.

[3] Péter Egri, Balázs Dávid, Tamás Kis, and Miklós Krész. 2021. Robust facility

location in reverse logistics. Annals of Operations Research (2021), 1–26.

[4] Bob Falk et al. 1997. Opportunities for the wood waste resource. Forest Products
Journal 47, 6 (1997), 17–22.

[5] Edward W Forgy. 1965. Cluster analysis of multivariate data: efficiency versus

interpretability of classifications. biometrics 21 (1965), 768–769.
[6] Herman P Friedman and Jerrold Rubin. 1967. On some invariant criteria for

grouping data. J. Amer. Statist. Assoc. 62, 320 (1967), 1159–1178.
[7] Attri Ghosal, Arunima Nandy, Amit Kumar Das, Saptarsi Goswami, and Mrityun-

joy Panday. 2020. A short review on different clustering techniques and their

applications. Emerging technology in modelling and graphics (2020), 69–83.
[8] Greg Hamerly and Charles Elkan. 2002. Alternatives to the k-means algorithm

that find better clusterings. In Proceedings of the eleventh international conference
on Information and knowledge management. 600–607.

[9] Ke Liao and Diansheng Guo. 2008. A clustering-based approach to the capacitated

facility location problem 1. Transactions in GIS 12, 3 (2008), 323–339.
[10] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on

information theory 28, 2 (1982), 129–137.

[11] James McQueen. 1967. Some methods for classification and analysis of multivari-

ate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1967. 281–297.

[12] Andrej Perkovic. 2022. K Means Clustering. https://github.com/AndrejPer/k_

means_clustering

[13] C Carl Robusto. 1957. The cosine-haversine formula. The American Mathematical
Monthly 64, 1 (1957), 38–40.

[14] Erwin M Schau, Črtomir Tavzes, Igor Gavrić, Iztok Šušteršič, Eva Prelovšek

Niemelä, Balázs Dávid, Jaka Gašper Pečnik, and David DeVallance. 2022. Envi-

ronmental and economic assessment of using wood to meet Paris Agreement

greenhouse gas emission reductions in Slovenia. In E3S Web of Conferences,
Vol. 349. EDP Sciences, 03005.

[15] Aamir Shafi, Bryan Carpenter, and Mark Baker. 2009. Nested parallelism for

multi-core HPC systems using Java. J. Parallel Distributed Comput. 69, 6 (2009),
532–545. https://doi.org/10.1016/j.jpdc.2009.02.006

[16] Junjie Wu. 2012. Advances in K-means clustering: a data mining thinking. Springer
Science & Business Media.

https://github.com/AndrejPer/k_means_clustering
https://github.com/AndrejPer/k_means_clustering
https://doi.org/10.1016/j.jpdc.2009.02.006

	Abstract
	1 Introduction
	2 Implementation
	2.1 Parallel mode
	2.2 Distributed mode

	3 Results
	4 Conclusions and future work
	Acknowledgments
	References

